

浏览全部资源
扫码关注微信
1.南通江天化学股份有限公司,江苏 南通 226010
2.西南化工研究设计院有限公司 多孔材料与分离转化 全国重点实验室,国家碳一化学工程技术研究中心,四川 成都 610225
Received:13 March 2025,
Revised:2025-04-30,
Published:25 December 2025
移动端阅览
陆辉,乔莎,张俊等.甲醛生产尾气催化燃烧中催化剂特性及其工业应用研究[J].低碳化学与化工,2025,50(12):87-94.
LU Hui,QIAO Sha,ZHANG Jun,et al.Study on characteristics and industrial application of catalysts in catalytic combustion of formaldehyde production tail gas[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(12):87-94.
陆辉,乔莎,张俊等.甲醛生产尾气催化燃烧中催化剂特性及其工业应用研究[J].低碳化学与化工,2025,50(12):87-94. DOI: 10.12434/j.issn.2097-2547.20250098.
LU Hui,QIAO Sha,ZHANG Jun,et al.Study on characteristics and industrial application of catalysts in catalytic combustion of formaldehyde production tail gas[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(12):87-94. DOI: 10.12434/j.issn.2097-2547.20250098.
铁钼法甲醇制甲醛生产尾气中含有一氧化碳(CO)、甲醛(CH
2
O)、甲醇(CH
3
OH)和二甲醚(DME)等多种污染物,协同脱除难度较大。结合不同工业催化燃烧催化剂的特性,采用组合装填方式可以提高对复杂污染物的协同净化效率。采用XRD、N
2
吸/脱附和TEM对Cat 1#和Cat 2#两种工业催化剂进行了物性分析。结合催化剂活性实验室评价结果与工业排放控制系统(ECS)装置运行情况,解析了催化剂构效关系,并阐明了其在工业应用中的效果。结果表明,Cat 1#具有较大的比表面积,这促进了贵金属分散,降低了CO起活温度;Cat 2#平均孔径较大,可以减小DME的扩散阻力,增大其转化率。采用组合装填方式汇集了两种催化剂的优点。实验室评价结果显示,反应在设定温度150 ℃(床层温度 135.4 ℃)时开始起活,起活后CO催化燃烧释放的热量使床层温升达到100~110 ℃,DME转化率超过90%。工业运行中,初期入口温度为170 ℃,此时出口甲醛质量浓度为1.1 mg/m
3
,非甲烷总烃质量浓度为1.7 mg/m
3
;工业运行末期,将入口温度提高至183 ℃,此时出口甲醛质量浓度为4.2 mg/m
3
,非甲烷总烃质量浓度为9.8 mg/m
3
,仍能满足排放标准。组合装填策略为复杂废气催化净化技术的开发提供了新思路,其工业应用数据对工程放大具有重要参考价值。
Tail gas from Fe-Mo methanol-to-formaldehyde production contains multiple pollutants such as carbon monoxide (CO)
formaldehyde (CH
2
O)
methanol (CH
3
OH) and dimethyl ether (DME)
which are difficult to remove collaboratively. Based on the characteristics of different industrial catalytic combustion catalysts
a combination loading strategy was adopted to enhance the synergistic purification efficiency of complex pollutants. The physical properties of two industrial catalysts
Cat 1# and Cat 2#
were analyzed using XRD
N
2
adsorption/desorption and TEM. Combined with laboratory activity evaluation results and the operation of the industrial emission control system (ECS)
the structure-activity relationships of the catalysts were clarified
and their industrial application performance was elucidated. The results show that Cat 1# has a larger specific surface ar
ea
which promotes precious metal dispersion and reduces the light-off temperature of CO
and Cat 2# has a larger average pore size
which decreases the diffusion resistance of DME and improves its conversion rate. The combination loading strategy integrates the advantages of both catalysts. Laboratory evaluation results show that the reaction start to light off at a set temperature of 150 ℃ (bed temperature 135.4 ℃). After light-off
the heat released by CO catalytic combustion increases the bed temperature from 100 ℃ to 110 ℃
and the DME conversion rate exceeds 90%. In industrial operation
at the initial inlet temperature of 170 ℃
the outlet formaldehyde mass concentration is 1.1 mg/m
3
and the total non-methane hydrocarbons mass concentration is 1.7 mg/m
3
. At the end of operation
when the inlet temperature is increased to 183 ℃
the outlet formaldehyde mass concentration reaches 4.2 mg/m
3
and the total non-methane hydrocarbons mass concentration is 9.8 mg/m
3
still meeting the emission standards. The combination loading strategy provides a new approach for catalytic purification of complex waste gas
and its industrial application data offers important reference value for engineering scale-up.
王莎莎 , 杨守禄 , 邓雪 , 等 . 低甲醛释放脲醛树脂胶黏剂研究进展 [J ] . 贵州林业科技 , 2025 , 53 ( 2 ): 83 - 88 .
WANG S S , YANG S L , DENG X , et al . Research progress of urea-formaldehyde resin adhesives with low formaldehyde release [J ] . Guizhou Forestry Science and Technology , 2025 , 53 ( 2 ): 83 - 88 .
聂涛 , 李新 . 我国聚甲醛生产和改性发展现状 [J ] . 石化技术 , 2022 , 29 ( 7 ): 267 - 269 .
NIE T , LI X . Development status of polyformaldehyde production and modification in China [J ] . Petrochemical Industry Technology , 2022 , 29 ( 7 ): 267 - 269 .
张杰 , 刘向春 . 甲醇氧化制甲醛用铁钼催化剂制备工艺的研究 [J ] . 现代化工 , 2024 , 44 ( 10 ): 115 - 118 .
ZHANG J , LIU X C . Study on preparation process of iron molybdenum catalyst for methanol oxidation to formaldehyde [J ] . Modern Chemical Industry , 2024 , 44 ( 10 ): 115 - 118 .
程金燮 , 黄宏 , 王华 , 等 . 固定床甲醇氧化制甲醛铁钼催化剂的应用与研究进展 [J ] . 低碳化学与化工 , 2024 , 49 ( 1 ): 12 - 24 .
CHENG J X , HUANG H , WANG H , et al . Application and research progress of iron-molybdenum catalysts for methanol oxidation to formaldehyde in fixed bed [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 1 ): 12 - 24 .
李贺 , 张利杰 , 张凯 , 等 . 甲醇氧化制甲醛工艺及催化剂研究进展 [J ] . 无机盐工业 , 2023 , 55 ( 11 ): 12 - 18 .
LI H , ZHANG L J , ZHANG K , et al . Advances in technology and catalyst for methanol oxidized to formaldehyde [J ] . Inorganic Chemicals Industry , 2023 , 55 ( 11 ): 12 - 18 .
王丹君 , 杨智云 , 山东明 . 挥发性有机污染物催化燃烧催化剂研究进展 [J ] . 山东化工 , 2024 , 53 ( 3 ): 101 - 104+107 .
WANG D J , YANG Z Y , SHAN D M . Research progress of catalytic combustion catalysts for volatile organic pollutants [J ] . Shandong Chemical Industry , 2024 , 53 ( 3 ): 101 - 104+107 .
林涛 . 甲醛生产尾气的催化燃烧 [C ] //中国甲醛行业协会. 2009中国甲醛行业协会年会暨国内外技术交流会论文集 . 2009 : 94 - 96 .
LIN T . Catalytic combustion of formaldehyde production tail gas [C ] //China Formaldehyde Industry Association. Proceedings of the 2009 China formaldehyde industry association annual conference and international technical exchange conference . 2009 : 94 - 96 .
陆辉 . 多聚甲醛装置排放尾气处理工艺改良的研究 [D ] . 镇江 : 江苏科技大学 , 2019 .
LU H . Research on the improvement of exhaust gas treatment process in polyformaldehyde equipment [D ] . Zhenjiang : Jiangsu University of Science and Technology , 2019 .
QIAO B , LIU J , ALLARD L , et al . Single-atom catalysis: Pt 1 /FeO x for CO oxidation and preferential oxidation of CO in H 2 [J ] . Microscopy and Microanalysis , 2012 , 18 ( S2 ): 350 - 351 .
PARKINSON G S , NOVOTNY Z , ARGENTERO G , et al . Carbon monoxide-induced adatom sintering in a Pd-Fe 3 O 4 model catalyst [J ] . Nature materials , 2013 , 12 ( 8 ): 724 - 728 .
GREEN I X , TANG W , NEUROCK M , et al . Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO 2 catalyst [J ] . Science , 2011 , 333 ( 6043 ): 736 - 739 .
LYU Y , XU J Y , CHEN S , et al . Simultaneous catalytic oxidation of toluene and CO over Cu-V/Al-Ce catalysts: Physicochemical properties-activity relationship and simultaneous oxidation mechanism [J ] . Journal of Hazardous Materials , 2024 , 466 : 133507 .
NYATHI T M , FISCHER N , YORK A P E , et al . Environment-dependent catalytic performance and phase stability of Co 3 O 4 in the preferential oxidation of carbon monoxide studied in situ [J ] . ACS Catalysis , 2020 , 10 ( 20 ): 11892 - 11911 .
BIEMELT T , WEGNER K , TEICHERT J , et al . Hopcalite nanoparticle catalysts with high water vapour stability for catalytic oxidation of carbon monoxide [J ] . Applied Catalysis B: Environmental , 2016 , 184 : 208 - 215 .
KIM H J , JANG M G , SHIN D , et al . Design of ceria catalysts for low-temperature CO oxidation [J ] . ChemCatChem , 2020 , 12 ( 1 ): 11 - 26 .
张俊杰 , 王大军 , 李珊珊 , 等 . 助剂Pr 6 O 11 掺杂对CeO 2 -ZrO 2 -Al 2 O 3 材料及其负载单Pd三效催化剂性能的影响研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 10 ): 72 - 80 .
ZHANG J J , WANG D J , LI S S , et al . Study on effects of surface modification by Pr 6 O 11 as promoter on performances of CeO 2 -ZrO 2 -Al 2 O 3 material and its supported Pd-only three-way catalyst [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 10 ): 72 - 80 .
MURAVEV V , SPEZZATI G , SU Y Q , et al . Interface dynamics of Pd-CeO 2 single-atom catalysts during CO oxidation [J ] . Nature Catalysis , 2021 , 4 : 469 - 478 .
廖久天 , 杨雅淇 , 张旭 , 等 . MnO 2 -CeO 2 纳米复合材料的制备及其对CO的净化催化性能 [J ] . 材料科学与工程学报 , 2023 , 41 ( 2 ): 269 - 275+289 .
LIAO J T , YANG Y Q , ZHANG X , et al . Preparation and CO catalytic performance of MnO 2 -CeO 2 nanocomposites [J ] . Journal of Materials Science and Engineering , 2023 , 41 ( 2 ): 269 - 275+289 .
SOLYMOSI F , CSERENYI J , OVARI L . A comparative study of the complete oxidation of dimethyl ether on supported group VIII metals [J ] . Catalysis Letters , 1997 , 44 ( 1 ): 89 - 93 .
ISHIKAWA A , IGLESIA E . Dimethyl ether combustion catalyzed by supported Pd, Rh, and Pt clusters: Site requirements and reaction pathways [J ] . Journal of Catalysis , 2007 , 252 ( 1 ): 49 - 56 .
张燕 , 肖彦 , 袁慎忠 , 等 . 不同配比的Pd, Pt, Rh三效催化剂性能研究 [J ] . 中国稀土学报 , 2003 , ( S2 ): 59 - 63 .
ZHANG Y , XIAO Y , YUAN S Z , et al . Study on catalytic activity of different Pd/Pt/Rh catalyst [J ] . Journal of the Chinese Society of Rare Earths , 2003 , ( S2 ): 59 - 63 .
方奕文 , 汤吉 , 吴武玲 , 等 . Ce 1- x Cu x O 2- x / γ -Al 2 O 3 及Ce 1- x Cu x O 2 催化剂的二甲醚催化燃烧性能研究 [J ] . 天然气化工—C1化学与化工 , 2009 , 34 ( 4 ): 42 - 46 .
FANG Y W , TANG J , WU W L , et al . Catalytic performance of Ce 1- x Cu x O 2- x / γ -Al 2 O 3 and Ce 1- x Cu x O 2 in catalytic combustion of dimethyl ether [J ] . Natural Gas Chemical Industry , 2009 , 34 ( 4 ): 42 - 46 .
皇甫晨阳 , 姚露露 , 马莹莹 , 等 . 工业应用场景对贵金属催化燃烧催化剂性能的影响 [J ] . 环境污染与防治 , 2023 , 45 ( 8 ): 1047 - 1054 .
HANGFU C Y , YAO L L , MA Y Y , et al . Influence of application scenarios on the performance of noble catalysts for catalytic combustion [J ] . Environmental Pollution & Control , 2023 , 45 ( 8 ): 1047 - 1054 .
唐振艳 , 刘锋 , 左川 , 等 . 挥发性有机物催化燃烧用贵金属催化剂的研究进展 [J ] . 贵金属 , 2020 , 41 ( 3 ): 85 - 93 .
TANG Z Y , LIU F , ZUO C , et al . Progress of precious metals catalysts for catalytic combustion of volatile organic compounds [J ] . Precious Metals , 2020 , 41 ( 3 ): 85 - 93 .
王哲 , 李晓良 , 史荣会 . 载体颗粒尺寸对Pd/ γ -Al 2 O 3 催化氧化苯甲醇性能影响 [J ] . 精细化工中间体 , 2024 , 54 ( 5 ): 35 - 41 .
WANG Z , LI X L , SHI R H . The effect of support particle size on the catalytic performance of Pd/ γ -Al 2 O 3 for the oxidation of benzyl alcohol [J ] . Fine Chemical Intermediates , 2024 , 54 ( 5 ): 35 - 41 .
HAGEN J . Industrial catalysis [M ] . 3rd. ed. Weinheim : Wiley-VCH , 2015 : 341 - 344 .
李绍芬 . 反应工程 [M ] . 第三版 . 北京 : 化学工业出版社 , 2012 : 182 - 184 .
LI S F . Reaction engineering [M ] . 3rd. ed. Beijing : Chemical Industry Press , 2012 : 182 - 184 .
环境保护部 . 石油化学工业污染物排放标准 : GB 31571—2015 [S ] . 北京 : 中国环境科学出版社 , 2015 .
Ministry of Environmental Protection . Emission standard of pollutants for petroleum chemistry industry : GB 31571—2015 [S ] . Beijing : China Environmental Science Press , 2015 .
生态环境部 . 炼焦化学工业大气污染物排放标准 : GB 16171.1—2024 [S ] . 北京 : 中国标准出版社 , 2024 .
Ministry of Ecology and Environment . Emission standard of air pollutants for coking chemical industry : GB 16171.1—2024 [S ] . Beijing : Standards Press of China , 2024 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution
蜀公网安备51012202001533