

浏览全部资源
扫码关注微信
太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
Received:07 March 2025,
Revised:2025-03-25,
Published:25 December 2025
移动端阅览
董志伟,加亚玲,李文英.电催化CO2还原制甲酸p区金属基催化剂原位重构的研究进展[J].低碳化学与化工,2025,50(12):1-10.
DONG Zhiwei,JIA Yaling,LI Wenying.Research progress on in situ reconstruction of p-block metal-based catalysts for electrocatalytic CO2 reduction to formic acid[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(12):1-10.
董志伟,加亚玲,李文英.电催化CO2还原制甲酸p区金属基催化剂原位重构的研究进展[J].低碳化学与化工,2025,50(12):1-10. DOI: 10.12434/j.issn.2097-2547.20250089.
DONG Zhiwei,JIA Yaling,LI Wenying.Research progress on in situ reconstruction of p-block metal-based catalysts for electrocatalytic CO2 reduction to formic acid[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(12):1-10. DOI: 10.12434/j.issn.2097-2547.20250089.
通过电催化CO
2
还原反应(ECO
2
RR)制备高附加值化学品和燃料,是实现“双碳”目标的有效途径,其中甲酸(HCOOH)是极具经济价值的产物之一。然而,CO
2
分子的热力学稳定性及ECO
2
RR中的多质子耦合电子转移过程使反应活性与产物选择性受限。p区金属(如Bi、In和Sn等)基催化剂凭借适宜的中间体OCHO*吸附强度,在ECO
2
RR制HCOOH中表现出较大的潜力。在电化学工作条件下,催化剂表面会因电场诱导、界面反应及化学环境改变而发生重构,这种结构演变使得揭示催化剂的结构与催化性能关系较为困难。鉴于此,聚焦于p区金属基催化剂在ECO
2
RR过程中的原位重构行为,系统分析了催化剂重构影响因素、重构类型以及表征技术,深入探讨了催化剂在动态工况下的构效关系,总结了在ECO
2
RR制HCOOH过程中p区金属基催化剂差异化的重构路径与活性位点演化规律,提出了构建“理论计算-机器学习-原位实验”体系的建议,可为设计高稳定性、高产物选择性的重构催化剂提供参考。
Electrocatalytic CO
2
reduction reaction (ECO
2
RR) for producing high value-added chemicals and fuels is an effective approach to achieving “dual carbon” goals
with formic acid (HCOOH) being one of the most economically valuable products. However
the thermodynamic stability of CO
2
molecules and the multi-proton-electron coupling processes during ECO
2
RR limit the reaction activity and product selectivity. p-block metal-based (such as Bi
In
Sn
etc.) catalysts show significant potential in ECO
2
RR to HCOOH
owing to their appropriate key formic acid intermediate OCHO* adsorption capability. Under electrochemical operating conditions
the catalyst surface undergoes reconstruction induced by electric fields
interfacial reactions and changes of chemical environments. This reconstruction makes it difficult to reveal the relationship between the stru
cture and catalytic performance of catalysts. In light of this
focusing on the in situ reconstruction behavior of p-block metal-based catalysts during ECO
2
RR
the influencing factors
reconstruction types and characterization techniques were systematically analyzed
and the structure-performance relationships of catalysts under dynamic operating conditions were explored
and different reconstruction pathways and evolution laws of active sites of p-block metal-based catalysts during ECO
2
RR to HCOOH were summarized. A suggestion was put forward to construct a “theoretical calculation-machine learning-in situ experiment” system
providing a reference for designing reconstructed catalysts with high stability and product selectivity.
ZHENG Q Y , LUAN S T , FENG Y Q , et al . Introduction of sulfur in Bi 2 O 3 to boost water activation for enhancing the reduction of CO 2 to formate [J ] . Journal of Power Sources , 2024 , 601 : 234298 .
ROY A , JADHAV H S , GIL SEO J . Cu 2 O/CuO electrocatalyst for electrochemical reduction of carbon dioxide to methanol [J ] . Electroanalysis , 2021 , 33 ( 3 ): 705 - 712 .
ZHANG B X , ZHANG J L , HUA M L , et al . Highly electrocatalytic ethylene production from CO 2 on nanodefective Cu nanosheets [J ] . Journal of the American Chemical Society , 2020 , 142 ( 31 ): 13606 - 13613 .
WANG J , ZHANG Y M , MA Y B , et al . Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials [J ] . ACS Materials Letters , 2022 , 4 ( 11 ): 2058 - 2079 .
MA Y Q , XU R , WU X , et al . Progress in catalysts for formic acid production by electrochemical reduction of carbon dioxide [J ] . Topics in Current Chemistry , 2024 , 383 ( 1 ): 2 .
CHO J W , MEDINA A , SAIH I , et al . 2D metal/graphene and 2D metal/graphene/metal systems for electrocatalytic conversion of CO 2 to formic acid [J ] . Angewandte Chemie International Edition , 2024 , 63 ( 12 ): e202320268 .
WEI Y H , WANG X T , MAO J N , et al . Chlorine-doped SnO 2 nanoflowers on nickel hollow fiber for enhanced CO 2 electroreduction at ampere-level current densities [J ] . Angewandte Chemie International Edition , 2025 , 64 ( 13 ): e202423370 .
DUARAH P , HALDAR D , YADAV V S K , et al . Progress in the electrochemical reduction of CO 2 to formic acid: A review on current trends and future prospects [J ] . Journal of Environmental Chemical Engineering , 2021 , 9 ( 6 ): 106394 .
YANG Z N , OROPEZA F E , ZHANG K H L . P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO 2 to formate [J ] . APL Materials , 2020 , 8 ( 6 ): 60901 .
LI S H , HU S Q , LIU H M , et al . Two-dimensional metal coordination polymer derived indium nanosheet for efficient carbon dioxide reduction to formate [J ] . ACS Nano , 2023 , 17 ( 10 ): 9338 - 9346 .
LIU C , ZHANG X D , HUANG J M , et al . In situ reconstruction of Cu-N coordinated MOFs to generate dispersive Cu/Cu 2 O nanoclusters for selective electroreduction of CO 2 to C 2 H 4 [J ] . ACS Catalysis , 2022 , 12 ( 24 ): 15230 - 15240 .
CHANG C J , LIN S C , CHEN H C , et al . Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO 2 reduction toward methane [J ] . Journal of the American Chemical Society , 2020 , 142 ( 28 ): 12119 - 12132 .
LI J , CHANG X X , ZHANG H C , et al . Electrokinetic and in situ spectroscopic investigations of CO 2 electrochemical reduction on copper [J ] . Nature Communications , 2021 , 12 ( 1 ): 3264 .
ZHANG W B , YANG Y , TANG Y , et al . In-situ reconstruction of catalysts in cathodic electrocatalysis: New insights into active-site structures and working mechanisms [J ] . Journal of Energy Chemistry , 2022 , 70 : 414 - 436 .
FENG J X , WANG X S , PAN H . In-situ reconstruction of catalyst in electrocatalysis [J ] . Advanced Materials , 2024 , 36 ( 50 ): 2411688 .
ZHANG J F , XIA S , WANG Y , et al . Recent advances in dynamic reconstruction of electrocatalysts for carbon dioxide reduction [J ] . iScience , 2024 , 27 ( 6 ): 110005 .
LIU X , WANG Y F , DAI Z W , et al . Electrochemical reduction of carbon dioxide to produce formic acid coupled with oxidative conversion of biomass [J ] . Journal of Energy Chemistry , 2024 , 92 : 705 - 729 .
LI C B , JI Y , WANG Y P , et al . Applications of metal-organic frameworks and their derivatives in electrochemical CO 2 reduction [J ] . Nano-Micro Letters , 2023 , 15 ( 1 ): 113 .
HAN J Y , BAI X , XU X Q , et al . Advances and challenges in the electrochemical reduction of carbon dioxide [J ] . Chemical Science , 2024 , 15 ( 21 ): 7870 - 7907 .
KUHL K P , CAVE E R , ABRAM D N , et al . New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces [J ] . Energy & Environmental Science , 2012 , 5 ( 5 ): 7050 - 7059 .
LI K , PENG B S , PENG T Y . Recent advances in heterogeneous photocatalytic CO 2 conversion to solar fuels [J ] . ACS Catalysis , 2016 , 6 ( 11 ): 7485 - 7527 .
HANDOKO A D , WEI F X , JENNDY , et al . Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques [J ] . Nature Catalysis , 2018 , 1 ( 12 ): 922 - 934 .
ZOU J S , LIANG G M , LEE C Y , et al . Progress and perspectives for electrochemical CO 2 reduction to formate [J ] . Materials Today Energy , 2023 , 38 : 101433 .
彭芦苇 , 张杨 , 何瑞楠 , 等 . 电催化二氧化碳还原催化剂、电解液、反应器和隔膜研究进展 [J ] . 物理化学学报 , 2023 , 39 : 47 - 70 .
PENG L W , ZHANG Y , HE R N , et al . Research advances in electrocatalysts, electrolytes, reactors and membranes for the electrocatalytic carbon dioxide reduction reaction [J ] . Acta Physico Chimica Sinica , 2023 , 39 : 47 - 70 .
DING P , ZHAO H T , LI T S , et al . Metal-based electrocatalytic conversion of CO 2 to fo rmic acid/formate [J ] . Journal of Materials Chemistry A , 2020 , 8 ( 42 ): 21947 - 21960 .
LEI Y R , WANG Z , BAO A , et al . Recent advances on electrocatalytic CO 2 reduction to resources: Target products, reaction pathways and typical catalysts [J ] . Chemical Engineering Journal , 2023 , 453 : 139663 .
田蒙 . 双金属催化剂原位重构及电催化还原二氧化碳的性能研究 [D ] . 兰州 : 兰州大学 , 2023 .
TIAN M . In-situ reconstruction of bimetallic catalysts and electrochemical catalytic reduction of carbon dioxide [D ] . Lanzhou : Lanzhou University , 2023 .
BARUCH M F , PANDER III J E , WHITE J L , et al . Mechanistic insights into the reduction of CO 2 on tin electrodes using in situ ATR-IR spectroscopy [J ] . ACS Catalysis , 2015 , 5 ( 5 ): 3148 - 3156 .
于丰收 , 湛佳宇 , 张鲁华 . p区金属基电催化还原二氧化碳制甲酸催化剂研究进展 [J ] . 化学进展 , 2022 , 34 ( 4 ): 983 - 991 .
YU F S , ZHAN J Y , ZHANG L H . The progress on electrochemical CO 2 -to-formate conversion by p-block metal based catalysts [J ] . Progress in Chemistry , 2022 , 34 ( 4 ): 983 - 991 .
HAN N , DING P , HE L , et al . Promises of main group metal-based nanostructured materials for electrochemical CO 2 reduction to formate [J ] . Advanced Energy Materials , 2020 , 10 ( 11 ): 1902338 .
LI P F , YANG F Q , LI J , et al . Nanoscale engineering of p-block metal-based catalysts toward industrial-scale electrochemical reduction of CO 2 [J ] . Advanced Energy Materials , 2023 , 13 ( 34 ): 2301597 .
LIU H , LI B Y , LIU Z H , et al . Ceria-mediated dynamic Sn 0 /Sn δ + redox cycle for CO 2 electroreduction [J ] . ACS Catalysis , 2023 , 13 ( 7 ): 5033 - 5042 .
LI F W , CHEN L , XUE M Q , et al . Towards a better Sn: Efficient electrocatalytic reduction of CO 2 to formate by Sn/SnS 2 derived from SnS 2 nanosheets [J ] . Nano Energy , 2017 , 31 : 270 - 277 .
JIA G R , WANG Y , SUN M Z , et al . Size effects of highly dispersed bismuth nanoparticles on electrocatalytic reduction of carbon dioxide to formic acid [J ] . Journal of the American Chemical Society , 2023 , 145 ( 25 ): 14133 - 14142 .
CHEN J Y , WANG L . Effects of the catalyst dynamic changes and influence of the reaction environment on the performance of electrochemical CO 2 reduction [J ] . Advanced Materials , 2022 , 34 ( 25 ): 2103900 .
WANG W B , DUAN J Y , LIU Y W , et al . Structural reconstruction of catalysts in electroreduction reaction: Identifying, understanding, and manipulating [J ] . Advanced Materials , 2022 , 34 ( 52 ): 2110699 .
ZHANG C R , GU Y C , JIANG Q , et al . Exploration of gas-dependent self-adaptive reconstruction behavior of Cu 2 O for electrochemical CO 2 conversion to multi-carbon products [J ] . Nano-Micro Letters , 2024 , 17 ( 1 ): 66 .
ROLLIER F A , MURAVEV V , PARASTAEV A , et al . Restructuring of Cu-based catalysts during CO 2 electroreduction: Evidence for the dominant role of surface defects on the C 2+ product selectivity [J ] . ACS Catalysis , 2024 , 14 ( 17 ): 13246 - 13259 .
LIN L , HE X Y , ZHANG X G , et al . A nanocomposite of bismuth clusters and Bi 2 O 2 CO 3 sheets for highly efficient electrocatalytic reduction of CO 2 to formate [J ] . Angewandte Chemie International Edition , 2023 , 62 ( 3 ): e202214959 .
CHEN R R , ZHAO J , ZHANG X , et al . Visualizing catalytic dynamics of single-Cu-atom-modified SnS 2 in CO 2 electroreduction via rapid freeze-quench Mössbauer spectroscopy [J ] . Journal of the American Chemical Society , 2024 , 146 ( 35 ): 24368 - 24376 .
FENG Y Q , XIAO J M , QIU Y Y , et al . Surface-reconstructed, mesoporous In 1.8 Bi 0.2 O 3 nanocubes as electrocatalysts for efficient CO 2 conversion to formate [J ] . ACS Catalysis , 2024 , 14 ( 23 ): 17571 - 17581 .
LIU H F , XIA J , ZHANG N , et al . Solid-liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO 2 reduction [J ] . Nature Catalysis , 2021 , 4 ( 3 ): 202 - 211 .
LAI W C , MA Z S , ZHANG J W , et al . Dynamic evolution of active sites in electrocatalytic CO 2 reduction reaction: Fundamental understanding and recent progress [J ] . Advanced Functional Materials , 2022 , 32 ( 16 ): 2111193 .
SHEN H F , JIN H Y , LI H B , et al . Acidic CO 2 -to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide [J ] . Nature Communications , 2023 , 14 ( 1 ): 2843 .
CHEN Y Q , ZHANG Y , LI Z , et al . Amphipathic surfactant on reconstructed bismuth enables industrial-level electroreduction of CO 2 to formate [J ] . ACS Nano , 2024 , 18 ( 29 ): 19345 - 19353 .
SHAH S S A , SUFYAN JAVED M , NAJAM T , et al . Metal oxides for the electrocatalytic reduction of carbon dioxide: Mechanism of active sites, composites, interface and defect engineering strategies [J ] . Coordination Chemistry Reviews , 2022 , 471 : 214716 .
YANG S Y , JIANG M H , ZHANG W J , et al . In situ structure refactoring of bismuth nanoflowers for highly selective electrochemical reduction of CO 2 to formate [J ] . Advanced Functional Materials , 2023 , 33 ( 37 ): 2301984 .
LI X T , WU X J , LV X Z , et al . Recent advances in metal-based electrocatalysts with hetero-interfaces for CO 2 reduction reaction [J ] . Chem Catalysis , 2022 , 2 ( 2 ): 262 - 291 .
YANG S , AN H Y , ARNOUTS S , et al . Halide-guided active site exposure in bismuth electrocatalysts for selective CO 2 conversion into f ormic acid [J ] . Nature Catalysis , 2023 , 6 ( 9 ): 796 - 806 .
ZHANG X L , SUN X H , GUO S X , et al . Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO 2 reduction at low overpotential [J ] . Energy & Environmental Science , 2019 , 12 ( 4 ): 1334 - 1340 .
DOU T , HE J Q , DIAO S T , et al . Dynamic reconstructuring of CuS/SnO 2 -S for promoting CO 2 electroreduction to formate [J ] . Journal of Energy Chemistry , 2023 , 82 : 497 - 506 .
CHENG W H , XU X Y , LIAO Q L , et al . In situ dynamic re-structuring and interfacial evolution of SnS 2 for high-performance electrochemical CO 2 reduction to formate [J ] . Chemical Engineering Journal , 2024 , 480 : 147922 .
XU W C , CHEN J , LIU C , et al . Precise control of CO 2 electroreduction pathways over copper foil through regulating the microenvironment between morphology and crystal plane [J ] . Applied Catalysis B: Environment and Energy , 2025 , 363 : 124825 .
LI B , CHEN J D , WANG L H , et al . High-performance Bi-based catalysts for CO 2 reduction: In situ formation of Bi/Bi 2 O 2 CO 3 and enhanced formate production [J ] . Advanced Science , 2025 : 2415616 .
WENG C C , WANG C , SONG Y , et al . In-situ reconstruction of active bismuth for enhanced CO 2 electroreduction to formate [J ] . Chemical Engineering Journal , 2025 , 505 : 159732 .
ZHANG Y Q , TAO L , XIE C , et al . Defect engineering on electrode materials for rechargeable batteries [J ] . Advanced Materials , 2020 , 32 ( 7 ): 1905923 .
MAO J N , MEI B B , YANG S , et al . In situ oxygen-vacancy engineering for enhancing CO 2 reduction activity [J ] . ACS Materials Letters , 2024 , 6 ( 12 ): 5375 - 5383 .
WANG Q , CHENG Y , TAO H B , et al . Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis [J ] . Angewandte Chemie International Edition , 2023 , 62 ( 11 ): e202216645 .
ZHENG D , YU L H , LIU W X , et al . Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts [J ] . Cell Reports Physical Science , 2021 , 2 ( 6 ): 100443 .
WULAN B , CAO X Y , TAN D X , et al . To stabilize oxygen on In/In 2 O 3 heterostructure via joule heating for efficient electrocatalytic CO 2 reduction [J ] . Advanced Functional Materials , 2023 , 33 ( 1 ): 2209114 .
DENG C J , QI C F , WU X M , et al . Unveiling the relationship between structural evaluation and catalytic performance of InOOH during electroreduction of CO 2 to formate [J ] . Green Carbon , 2024 , 2 ( 1 ): 124 - 130 .
GARCÍA DE ARQUER F P , BUSHUYEV O S , DE LUNA P , et al . 2D metal oxyhalide-derived catalysts for efficient CO 2 electroreduction [J ] . Advanced Materials , 2018 , 30 ( 38 ): 1802858 .
WANG X W , ZHANG Y Y , WANG S , et al . Steering geometric reconstruction of bismuth with accelerated dynamics for CO 2 electroreduction [J ] . Angewandte Chemie International Edition , 2024 , 63 ( 34 ): e202407665 .
HUANG X , HAN X X , TANG R J , et al . Anion-mediated in situ reconstruction of the Bi 2 MoO 6 precatalyst for enhanced electrochemical CO 2 reduction over a wide potential window [J ] . ACS Applied Materials & Interfaces , 2024 , 16 ( 1 ): 742 - 751 .
LI B , CHEN J D , WANG L H , et al . Dynamic reconstruction of Cu-doped SnO 2 for efficient electrochemical reduction of CO 2 to formate [J ] . Applied Catalysis B: Environment and Energy , 2025 , 363 : 124784 .
CHEN M X , WAN S P , ZHONG L X , et al . Dynamic restructuring of Cu-doped SnS 2 nanoflowers for highly selective electrochemical CO 2 reduction to formate [J ] . Angewandte Chemie International Edition , 2021 , 60 ( 50 ): 26233 - 26237 .
SINGH A , BARMAN S , RAHIMI F A , et al . Atomically dispersed Co 2+ in a redox-active COF for electrochemical CO 2 reduction to ethanol: Unravelling mechanistic insight through operando studies [J ] . Energy & Environmental Science , 2024 , 17 ( 6 ): 2315 - 2325 .
YANG Y , XIONG Y , ZENG R , et al . Operando methods in electrocatalysis [J ] . ACS Catalysis , 2021 , 11 ( 3 ): 1136 - 1178 .
LEI Q , HUANG L , YIN J , et al . Structural evolution and strain generation of derived-Cu catalysts during CO 2 electroreduction [J ] . Nature Communications , 2022 , 13 ( 1 ): 4857 .
WU B , SUN T X , YOU Y , et al . In situ X-ray absorption spectroscopy of metal/nitrogen-doped carbons in oxygen electrocatalysis [J ] . Angewandte Chemie International Edition , 2023 , 62 ( 27 ): e202219188 .
LIU H J , QI Z M , SONG L . In situ electrocatalytic infrared spectroscopy for dynamic reactions [J ] . The Journal of Physical Chemistry C , 2021 , 125 ( 44 ): 24289 - 24300 .
YAO Y B , ZHOU Y X , LIU X , et al . Restraining lattice oxygen of Cu 2 O by enhanced Cu-O hybridization for selective and stable production of ethylene with CO 2 electroreduction [J ] . Journal of Materials Chemistry A , 2022 , 10 ( 39 ): 20914 - 20923 .
LIANG X D , ZHENG Q Z , WEI N , et al . In-situ constructing Bi@Bi 2 O 2 CO 3 nanosheet catalyst for ampere-level CO 2 electroreduction to formate [J ] . Nano Energy , 2023 , 114 : 108638 .
WANG H B , TANG C Y , SUN B , et al . In-situ structural evolution of Bi 2 O 3 nanoparticle catalysts for CO 2 electroreduction [J ] . International Journal of Extreme Manufacturing , 2022 , 4 ( 3 ): 35002 .
TIMOSHENKO J , ROLDAN CUENYA B . In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy [J ] . Chemical Reviews , 2021 , 121 ( 2 ): 882 - 961 .
CHEN P C , CHEN C B , YANG Y , et al . Chemical and structural evolution of AgCu catalysts in electrochemical CO 2 reduction [J ] . Journal of the American Chemical Society , 2023 , 145 ( 18 ): 10116 - 10125 .
XU J Y , PATEL P , LIU D J , et al . Understanding the dynamic evolution of atomically dispersed Cu catalyst for CO 2 electrochemical conversion using integrated XANES analysis and mechanistic studies [J ] . Journal of Catalysis , 2023 , 425 : 296 - 305 .
LV L , LU R H , ZHU J X , et al . Coordinating the edge defects of bismuth with sulfur for enhanced CO 2 electroreduction to formate [J ] . Angewandte Chemie International Edition , 2023 , 62 ( 25 ): e202303117 .
LIU Y H , WEI Z M , SU X Z , et al . Promoting electrochemical CO 2 reduction to formate via sulfur-assisted electrolysis [J ] . Advanced Functional Materials , 2024 : 2403547 .
XU B B , LIU Y , LIU Y W , et al . Operando electrochemical NMR spectroscopy reveals a water-assisted formate formation mechanism [J ] . Chem , 2024 , 10 ( 10 ): 3114 - 3130 .
ZENG Y Q , LI X N , WANG J H , et al . In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis [J ] . Chem Catalysis , 2021 , 1 ( 6 ): 1215 - 1233 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution
蜀公网安备51012202001533