

浏览全部资源
扫码关注微信
中石化石油化工科学研究院有限公司,北京 100083
Received:27 February 2025,
Revised:2025-04-01,
Published:25 December 2025
移动端阅览
邓家康,汪天也,李红伟等.助剂改性Fe基催化剂在高通量反应器中催化CO加氢制α-烯烃性能研究[J].低碳化学与化工,2025,50(12):30-39.
DENG Jiakang,WANG Tianye,LI Hongwei,et al.Study on performance of promoter-modified Fe-based catalysts for CO hydrogenation to α-olefins in high-throughput reactor[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(12):30-39.
邓家康,汪天也,李红伟等.助剂改性Fe基催化剂在高通量反应器中催化CO加氢制α-烯烃性能研究[J].低碳化学与化工,2025,50(12):30-39. DOI: 10.12434/j.issn.2097-2547.20250075.
DENG Jiakang,WANG Tianye,LI Hongwei,et al.Study on performance of promoter-modified Fe-based catalysts for CO hydrogenation to α-olefins in high-throughput reactor[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(12):30-39. DOI: 10.12434/j.issn.2097-2547.20250075.
通过Fe基催化剂催化CO加氢直接合成
α
-烯烃是实现碳资源化利用的重要途径之一。分别采用共沉淀法和等体积浸渍法制备了
x
Fe/Zn和
x
Fe/Zn-
y
Na催化剂,利用16通道高通量反应器进行了催化剂性能评价,实现了催化剂的快速高效筛选。同时,考察了Zn、Na助剂对Fe基催化剂制备
α
-烯烃的促进作用。通过N
2
吸/脱附、XRD和H
2
-TPR等多种方法对反应前后的催化剂进行了表征。数据显示,Zn在加入过程中可以与Fe形成ZnFe
2
O
4
固溶体,提高了催化剂的稳定性;Na有利于催化剂在反应过程中的活化,促进了活性相形成。在340 ℃、2.0 MPa和体积空速54000 mL/(g·h)条件下,1.0Fe/Zn-3.6Na(
n
(Fe)/
n
(Zn) = 1.0、
w
(Na) = 3.6%)具有最优的催化性能:CO转化率为48.17%,CH
4
选择性为6.28%,C
2
~C
4
烃类产物烯烷选择性比(O/P值)为6.25,C
5
~C
15
烃类产物中
α
-烯烃质量分数提高至38.19%(数据采集时间为48 h)。针对16种催化剂的筛选工作,与传统单固定床反应器相比,高通量反应器可以节省约94%实验时间,且在稳定控制强放热反应的反应温度、压力等方面表现优异。
Direct synthesis of
α
-olefins through CO hydrogenation catalyzed by Fe-based cata
lysts is one of the important ways to realize carbon resource utilization.
x
Fe/Zn and
x
Fe/Zn-
y
Na catalysts were prepared by co-precipitation and iso-volume impregnation methods
respectively
and they were evaluated by a sixteen-channel high-throughput reactor to realize rapid and efficient screening of catalysts. The promotional effects of Zn and Na additives on the preparation of
α
-olefins by Fe-based catalysts were also investigated. The catalysts before and after reaction were characterized by N
2
adsorption/desorption
XRD
H
2
-TPR and so on. The data shows that Zn can form ZnFe
2
O
4
solid solution with Fe during the addition process
improving the stability of catalysts. The addition of Na facilitates the activation of catalysts
promoting the formation of the active phases. 1.0Fe/Zn-3.6Na ((
n
(Fe)/
n
(Zn) = 1.0 and
w
(Na) = 3.6%) has the optimal catalytic performance under the reaction conditions of 340 ℃
2.0 MPa and volume space velocity of 54000 mL/(g·h): CO conversion rate of 48.17%
CH
4
selectivity of 6.28%
alkene to alkane selectivity ratio for C
2
~C
4
hydrocarbon products (O/P value) of 6.25 and mass fraction of
α
-olefins in C
5
~C
15
hydrocarbon products increasing to 38.19% (data collection time of 48 h). For the screening of sixteen catalysts
high-throughput reactors can save about 94% of experimental time
compared with conventional single fixed-bed reactors
and perform excellently in stable control of reaction temperatures
pressures and other aspects of highly exothermic reactions.
SCHULZ H , CLAEYS M . Reactions of α -olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reactor [J ] . Applied Catalysis A: General , 1999 , 186 ( 1/2 ): 71 - 90 .
ZHOU W , CHENG K , KANG J C , et al . New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO 2 into hydrocarbon chemicals and fuels [J ] . Chemical Society Reviews , 2019 , 48 ( 12 ): 3193 - 3228 .
KHODAKOV A Y , CHU W , FONGARLAND P . Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J ] . Chemical Reviews , 2007 , 107 ( 5 ): 1692 - 1744 .
高新华 , 夏世钦 , 梁洁 , 等 . 铁基催化剂活性相调控及其催化CO 2 加氢制线性 α -烯烃研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 5 ): 1 - 8 .
GAO X H , XIA S Q , LIANG J , et al . Research progress on active phases regulation of iron-based catalysts and their CO 2 catalytic hydrogenation to linear α -olefins [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 5 ): 1 - 8 .
李自琴 , 王康洲 , 高新华 , 等 . CO 2 加氢制高碳 α -烯烃Fe基催化剂研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 11 - 21 .
LI Z Q , WANG K Z , GAO X H , et al . Research progress on Fe-based catalysts for CO 2 hydrogenation to high carbon α -olefins [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 11 - 21 .
LI Y F , CHEN J Y , LI Z S , et al . Selective production of light α -olefins and long-chain α -olefins from CO 2 /H 2 and CO/H 2 over iron-based catalysts: Effects of Na 2 S and H 2 O [J ] . Journal of Catalysis , 2024 , 436 : 115587 .
XU Y , ZHAI P , DENG Y C , et al . Highly selective olefin production from CO 2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives [J ] . Angewandte Chemie International Edition , 2020 , 59 ( 48 ): 21736 - 21744 .
YANG S K , CHUN H J , LEE S , et al . Parative study of olefin production from CO and CO 2 using Na- and K-promoted zinc ferrite [J ] . ACS Catalysis , 2020 , 10 ( 18 ): 10742 - 10759 .
WITOON T , CHAIPRADITGUL N , NUMPILAI T , et al . Highly active Fe-Co-Zn/K-Al 2 O 3 catalysts for CO 2 hydrogenation to light olefins [J ] . Chemical Engineering Science , 2021 , 233 : 116428 .
OREGE J I , WEI J , HAN Y , et al . Highly stable Sr and Na co-decorated Fe catalyst for high-valued olefin synthesis from CO 2 hydrogenation [J ] . Applied Catalysis B: Environmental , 2022 , 316 : 121640 .
WANG P , CHIANG F K , CHAI J C , et al . Efficient conversion of syngas to linear α -olefins by phase-pure χ -Fe 5 C 2 [J ] . Nature , 2024 , 635 ( 8037 ): 102 - 107 .
ZHAI P , XU C , GAO R , et al . Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe 5 C 2 catalyst [J ] . Angewandte Chemie International Edition , 2016 , 55 ( 34 ): 9902 - 9907 .
VAN DER WAAL J K , KLAUS G , SMIT M , et al . High-throughput experimentation in syngas based research [J ] . Catalysis Today , 2011 , 171 ( 1 ): 207 - 210 .
YANG Y , XIANG H W , XU Y Y , et al . Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis [J ] . Applied Catalysis A: General , 2004 , 266 ( 2 ): 181 - 194 .
LOHITHARN N , GOODWIN J G . Effect of K promotion of Fe and FeMn Fischer-Tropsch synthesis catalysts: Analysis at the site level using SSITKA [J ] . Journal of Catalysis , 2008 , 260 ( 1 ): 7 - 16 .
王涛 , 张雪冰 , 张琪 , 等 . 合成气高温费托合成制低碳烯烃铁催化剂研究进展 [J ] . 能源科技 , 2020 , 18 ( 1 ): 66 - 71 .
WANG T , ZHANG X B , ZHANG Q , et al . Advances in iron catalysts for syngas high temperature Fischer-Tropsch synthesis to low carbon olefins [J ] . Energy and Technology , 2020 , 18 ( 1 ): 66 - 71 .
孙超 . 金属Na与Zn对铁基催化剂结构调控及CO 2 加氢制烯烃的影响 [D ] . 郑州 : 郑州大学 , 2021 .
SUN C . Effect of Na and Zn on structure regulation and hydrogenation of CO 2 to olefin over iron-based catalysts [D ] . Zhengzhou : Zhengzhou university , 2021 .
YANG S , LEE S , KANG S C , et al . Linear α -olefin production with Na-promoted Fe-Zn catalysts via Fischer-Tropsch synthesis [J ] . RSC Advances , 2019 , 9 ( 25 ): 14176 - 14187 .
YANG H Y , WEI Z Q , ZHANG J , et al . Tuning the selectivity of CO 2 hydrogenation to alcohols by crystal structure engineering [J ] . Chem , 2024 , 10 ( 7 ): 2245 - 2265 .
YIN J Q , LIU X C , LIU X W , et al . Theoretical exploration of intrinsic facet-dependent CH 4 and C 2 formation on Fe 5 C 2 particle [J ] . Applied Catalysis B: Environmental , 2020 , 278 : 119308 .
ZHANG Z P , ZHANG J , WANG X , et al . Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins [J ] . Journal of Catalysis , 2018 , 365 : 71 - 85 .
刘伟 , 俎浩楠 , 吴华帅 , 等 . 助剂Na和Zn对Fe基催化剂催化CO 2 加氢制低碳烯烃反应性能的影响 [J ] . 低碳化学与化工 , 2024 , 49 ( 8 ): 107 - 114 .
LIU W , ZU H N , WU H S , et al . Effects of promoter Na and Zn on catalytic performances of Fe based catalysts for CO 2 hydrogenation to light olefins [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 8 ): 107 - 114 .
YAMASHITA T , HAYES P . Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials [J ] . Applied Surface Science , 2008 , 254 ( 8 ): 2441 - 2449 .
YANG C , ZHAO H B , HOU Y L , et al . Fe 5 C 2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis [J ] . Journal of the American Chemical Society , 2012 , 134 ( 38 ): 15814 - 15821 .
RAMIREZ A , GEVERS L , BAVYKINA A , et al . Metal organic framework-derived iron catalysts for the direct hydrogenation of CO 2 to short chain olefins [J ] . ACS Catalysis , 2018 , 8 ( 10 ): 9174 - 9182 .
ZHAO H B , ZHU Q J , GAO Y J , et al . Iron oxide nanoparticles supported on pyrolytic graphene oxide as model catalysts for Fischer-Tropsch synthesis [J ] . Applied Catalysis A: General , 2013 , 456 : 233 - 239 .
BIESINGER M C , PAYNE B P , GROSVENOR A P , et al . Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J ] . Applied Surface Science , 2011 , 257 ( 7 ): 2717 - 2730 .
DING M Y , YANG Y , WU B S , et al . Transformation of carbonaceous species and its influence on catalytic performance for iron-based Fischer-Tropsch synthesis catalyst [J ] . Journal of Molecular Catalysis A: Chemical , 2011 , 351 : 165 - 173 .
SADEZKY A , MUCKENHUBER H , GROTHE H , et al . Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information [J ] . Carbon , 2005 , 43 ( 8 ): 1731 - 1742 .
PIMENTA M A , DRESSELHAUS G , DRESSELHAUS M S , et al . Studying disorder in graphite-based systems by raman spectroscopy [J ] . Physical Chemistry Chemical Physics , 2007 , 9 ( 11 ): 1276 - 1290 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution
蜀公网安备51012202001533