

浏览全部资源
扫码关注微信
河北农业大学 城乡建设学院,河北 保定 071000
Received:18 January 2025,
Revised:2025-03-12,
Published:25 November 2025
移动端阅览
宇文晨,张泰境,吉欢欢.铜铝水滑石电催化还原硝酸盐合成氨性能研究[J].低碳化学与化工,2025,50(11):138-149.
YUWEN Chen,ZHANG Taijing,JI Huanhuan.Performance study of ammonia synthesis via electrocatalytic nitrate reduction catalyzed by copper-aluminum layered double hydroxide[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):138-149.
宇文晨,张泰境,吉欢欢.铜铝水滑石电催化还原硝酸盐合成氨性能研究[J].低碳化学与化工,2025,50(11):138-149. DOI: 10.12434/j.issn.2097-2547.20250029.
YUWEN Chen,ZHANG Taijing,JI Huanhuan.Performance study of ammonia synthesis via electrocatalytic nitrate reduction catalyzed by copper-aluminum layered double hydroxide[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):138-149. DOI: 10.12434/j.issn.2097-2547.20250029.
与传统的合成氨工艺(Haber-Bosch法)相比,电催化还原硝酸盐合成氨技术具有可再生能源驱动、反应条件温和及无二次污染等优势。然而,该反应仍面临催化剂催化活性不足、产物选择性较低以及稳定性较差等挑战。采用水热法合成了不同铜铝比例(
n
(Cu)/
n
(Al)
= x
= 1.5、2或3)的铜铝水滑石(Cu
x
Al-LDH),并对其进行了表征分析与电化学性能测试,系统探讨了铜铝比例、电解液中初始NO
<math id="M1"><msubsup><mrow/><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=94284981&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=94284986&type=
1.10066664
-N质量浓度、施加电位及光照条件对电催化还原硝酸盐合成氨的影响。结果表明,在电位为-0.6 V
vs
. RHE及初始NO
<math id="M2"><msubsup><mrow/><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=94284981&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=94284986&type=
1.10066664
-N质量浓度为500 mg/L条件下,Cu
2
Al-LDH电极的法拉第效率达到98.2%,氨产率达到822.3 μg/(h·cm
2
)。增加光照后,在相同条件下,Cu
1.5
Al-LDH电极表现出更优的催化性能,理论法拉第效率达到150.5%,氨产率达到1149.1 μg/(h·cm
2
)。此外,Cu
2
Al-LDH和Cu
1.5
Al-LDH电极分别在电催化和光辅助电催化条件下表现出优异的稳定性,持续反应10 h后仍能维持较高的法拉第效率。铜铝水滑石在电催化还原硝酸盐合成氨反应中表现出优异性能,具有应用于绿色合成氨的潜力。
Compared with the traditional ammonia synthesis process (Haber Bosch method)
electrocatalytic nitrate reduction to ammonia offers advantages such as renewable energy input
mild reaction conditions and no secondary pollution. However
this reaction still faces challenges including insufficient catalytic activity
low product selectivity and poor stability. Copper-aluminum layered double hydroxides (Cu
x
Al-LDH) with different ratios of Cu to Al (
n
(Cu)/
n
(Al)
= x =
1.5
2 or 3) were synthesized by hydrothermal method. Their structures were characterized
and their electrochemical performances were evaluated. The effects of Cu/Al ratio
initial NO
<math id="M3"><msubsup><mrow/><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=94285001&type=
3.64066648
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=94285035&type=
1.10066664
-N mass concentration in the electrolyte
applied potential and illumination on the efficiency of electrocatalytic nitrate reduction to ammonia were systematically investigated. The results show that the Cu
2
Al-LDH electrode achieves a Faradaic efficiency o
f 98.2% and an ammonia yield of 822.3 μg/(h·cm
2
) at -0.6 V
vs
. RHE with an initial NO
<math id="M4"><msubsup><mrow/><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=94285001&type=
3.64066648
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=94285035&type=
1.10066664
-N mass concentration of 500 mg/L. Upon light illumination
the Cu
1.5
Al-LDH electrode exhibits enhanced catalytic performance under the same conditions
achieving a theoretical Faradaic efficiency of 150.5% and an ammonia yield of 1149.1 μg/(h·cm
2
). Furthermore
both Cu
2
Al-LDH and Cu
1.5
Al-LDH electrodes display excellent stability under electrocatalytic and photo-assisted electrocatalytic conditions
respectively
maintaining high Faradaic efficiency after continuous operation for ten hours. These results indicate that copper-aluminum layered double hydroxides show promising performance for the electrocatalytic reduction of nitrate to ammonia and hold great potential for green ammonia synthesis.
王中华 , 郑淞生 , 姚育栋 , 等 . 电催化分解氨制氢研究进展 [J ] . 化工学报 , 2022 , 73 ( 3 ): 1008 - 1021 .
WANG Z H , ZHENG S S , YAO Y D , et al . Research progress on electrocatalytic decomposition of ammonia for hydrogen production [J ] . CIESC Journal , 2022 , 73 ( 3 ): 1008 - 1021 .
SWEARER D F , KNOWLES N R , EVERITT H O , et al . Light-driven chemical looping for ammonia synthesis [J ] . ACS Energy Letters , 2019 , 4 ( 7 ): 1505 - 1512 .
ZHENG J Y , JIANG L , LYU Y H , et al . Green synthesis of nitrogen‐to‐ammonia fixation: Past, present, and future [J ] . Energy & Environmental Materials , 2021 , 5 ( 2 ): 452 - 457 .
赵慧 , 王富东 , 钱光磊 , 等 . 电催化还原废水中硝酸盐制氨的研究进展 [J ] . 工业水处理 , 2024 , 44 ( 1 ): 60 - 72 .
ZHAO H , WANG F D , QIAN G L , et al . Research progress of electrocatalytic reduction of nitrate in wastewater to ammonia [J ] . Industrial Water Treatment , 2024 , 44 ( 1 ): 60 - 72 .
ZHANG Z Q , ZHANG N , ZHANG J , et al . Critical review in electrocatalytic nitrate reduction to ammonia towards a sustainable nitrogen utilization [J ] . Chemical Engineering Journal , 2024 , 483 : 148952 .
WANG Y , SHAO M H . Theoretical screening of transition metal-N 4 -doped graphene for electroreduction of nitrate [J ] . ACS Catalysis , 2022 , 12 ( 9 ): 5407 - 5415 .
CHEN G F , YUAN Y F , JIANG H F , et al . Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst [J ] . Nature Energy , 2020 , 5 : 605 - 613 .
LI Z H , LIU J J , ZHAO J Q , et al . Photo‐driven hydrogen production from methanol and water using plasmonic Cu nanoparticles derived from layered double hydroxides [J ] . Advanced Functional Materials , 2022 , 33 ( 11 ): 2213672 .
LI R , GAO T T , WANG P F , et al . The origin of selective nitrate-to-ammonia electroreduction on metal-free nitrogen-doped carbon aerogel catalysts [J ] . Applied Catalysis B: Environmental , 2023 , 331 : 122677 .
HUANG Y M , LONG J , WANG Y T , et al . Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia [J ] . ACS applied materials & Interfaces , 2021 , 13 ( 46 ): 54967 - 54973 .
杨浩 , 黄利宏 , 周庆 , 等 . Zn-Al类水滑石功能材料的应用 [J ] . 广东化工 , 2016 , 43 ( 16 ): 270 - 271+273 .
YANG H , HUANG L H , ZHOU Q , et al . Application of zinc-aluminum hydrotalcite-like functional materials [J ] . Guangdong Chemical Industry , 2016 , 43 ( 16 ): 270 - 271+273 .
QIN H L , CHENG J , ZHOU P , et al . In situ semi-etching of bimetallic LDH nanosheet arrays into FeNi-LDH/MOF to boost oxygen evolution reaction [J ] . Chemical Engineering Journal , 2024 , 493 : 152721 .
余俊 , 杨宇森 , 卫敏 . 水滑石基负载型催化剂的制备及其在催化反应中的应用 [J ] . 化学学报 , 2019 , 77 ( 11 ): 1129 - 1139 .
YU J , YANG Y S , WEI M . Preparation and catalytic performance of supported catalysts derived from layered double hydroxides [J ] . Acta Chimica Sinica , 2019 , 77 ( 11 ): 1129 - 1139 .
DU F , LI J S , WANG C H , et al . Active sites-rich layered double hydroxide for nitrate-to-ammonia production with high selectivity and stability [J ] . Chemical Engineering Journal , 2022 , 434 : 134641 .
WANG W Y , CHEN J , TSE E C M . Synergy between Cu and Co in a layered double hydroxide enables close to 100% nitrate-to-ammonia selectivity [J ] . Journal of the American Chemical Society , 2023 , 145 ( 49 ): 26678 - 26687 .
CHIANG C H , KAO Y T , WU P H , et al . Efficient ammonia photosynthesis from nitrate by graphene/Si Schottky junction integrated with Ni-Fe LDH catalyst [J ] . Journal of Materials Chemistry A , 2023 , 11 ( 21 ): 11179 - 11186 .
陈阳 . 铜铝水滑石的制备与应用 [D ] . 上海 : 上海工程技术大学 , 2017 .
CHEN Y . Preparation and application of Cu-allayered double hydroxide [D ] . Shanghai : Shanghai University of Engineering and Technology , 2017 .
ZHANG W , HUANG C Q , XIAO Q , et al . Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO 2 reduction [J ] . Journal of the American Chemical Society , 2020 , 142 ( 26 ): 11417 - 11427 .
REN C , WANG H T , JI J F , et al . Molecular scale assessment of defluoridation of coal-mining wastewater by calcined Mg/Al layered double hydroxide using 19 F solid-state NMR, XPS, and HRTEM [J ] . Chemosphere , 2022 , 303 : 135072 .
欧阳思达 . 可见光响应类水滑石基高熵光催化剂的构筑及其对水中氨氮脱氮研究 [D ] . 南昌 : 南昌大学 , 2024 .
OUYANG S D . Construction of visible light responsive hydrotalcites-based high-entropy photocatalysts and the catalytic denitrifcation of ammonianitrogen in water [D ] . Nanchang : Nanchang University , 2024 .
ZHONG Q , LIU J , WANG J T , et al . Efficient degradation of organic pollutants by activated peroxymonosulfate over TiO 2 @C decorated Mg-Fe layered double oxides: Degradation pathways and mechanism [J ] . Chemosphere , 2022 , 300 : 134564 .
FANAEI F , MOUSSAVI G , SRIVASTAVA V , et al . The enhanced catalytic potential of sulfur-doped MgO (S-MgO) nanoparticles in activation of peroxysulfates for advanced oxidation of acetaminophen [J ] . Chemical Engineering Journal , 2019 , 371 : 404 - 413 .
WANG Q H , DU Y X , GONG Y C , et al . Phosphorous and cations boost the electrocatalytic performances of Cu-based compounds for hydrogen/oxygen evolution reactions and overall water-splitting [J ] . Chemical Engineering Journal , 2024 , 489 : 151322 - 151322 .
张博 , 李雪梅 , 朱文祺 . 新型复合CdIn 2 S 4 /ZnIn 2 S 4 异质结的制备及其光催化性能 [J ] . 复合材料学报 , 2023 , 40 ( 12 ): 6649 - 6659 .
ZHANG B , LI X M , ZHU W Q . Preparation and photocatalytic properties of novel composite CdIn 2 S 4 /ZnIn 2 S 4 heterojunction [J ] . Acta Materiae Compositae Sinica , 2023 , 40 ( 12 ): 6649 - 6659 .
MCCRORY C C L , JUNG S , FERRER I M , et al . Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices [J ] . Journal of the American Chemical Society , 2015 , 137 ( 13 ): 4347 - 4357 .
XIONG X Y , ZHAO Y F , SHI R , et al . Selective photocatalytic CO 2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals [J ] . Science Bulletin , 2020 , 65 ( 12 ): 987 - 994 .
TIAN N , ZHANG Y H , LI X W , et al . Precursor-reforming protocol to 3D mesoporous g-C 3 N 4 established by ultrathin self-doped nanosheets for superior hydrogen evolution [J ] . Nano Energy , 2017 , 3872 - 3881 .
FENG Y , LIN S , HUANG S , et al . Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals? [J ] . Journal of Applied Physics , 2015 , 117 ( 12 ): 125701 .
BAI Y , YE L Q , CHEN T , et al . Facet-dependent photocatalytic N 2 fixation of bismuth-rich Bi 5 O 7 I nanosheets [J ] . ACS Applied Materials & Interfaces , 2016 , 8 ( 41 ): 27661 - 27668 .
郭睿 , 秦侠 , 郭城睿 , 等 . Ni foam/Cu电极电催化还原硝酸盐氮 [J ] . 环境化学 , 2022 , 41 ( 6 ): 2103 - 2111 .
GUO R , QIN X , GUO C R , et al . Electrocatalytic reduction of nitrate nitrogen by Ni foam/Cu electrode [J ] . Environmental Chemistry , 2022 , 41 ( 6 ): 2103 - 2111 .
KIM C , PARK S O , KWAK S K , et al . Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide [J ] . Nature Communications , 2023 , 14 ( 1 ): 5822 - 5822 .
QIU W X , XIE M H , WANG P F , et al . Size-defined Ru nanoclusters supported by TiO 2 nanotubes enable low-concentration nitrate electroreduction to ammonia with suppressed hydrogen evolution [J ] . Small , 2023 , 19 ( 30 ): 2300437 .
GUO Y , ZHANG R , ZHANG S C , et al . Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO 2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries [J ] . Energy & Environmental Science , 2021 , 14 ( 7 ): 3938 - 3944 .
ZHANG Y Z , CHEN X , WANG W L , et al . Electrocatalytic nitrate reduction to ammonia on defective Au 1 Cu (111) single-atom alloys [J ] . Applied Catalysis B: Environmental , 2022 , 310 : 121346 .
LI C J , LIU S L , XU Y , et al . Controllable reconstruction of copper nanowires into nanotubes for efficient electrocatalytic nitrate conversion into ammonia [J ] . Nanoscale , 2022 , 14 ( 34 ): 12332 - 12338 .
DING J Y , HOU X H , QIU Y , et al . Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS 2 nanosheets [J ] . Inorganic Chemistry Communications , 2023 , 151 : 110621 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution
蜀公网安备51012202001533