

浏览全部资源
扫码关注微信
1.昆明理工大学 冶金与能源工程学院,云南 昆明 650500
2.攀枝花学院 生物与化学工程学院,四川 攀枝花 617000
Received:13 January 2025,
Revised:2025-03-03,
Published:25 December 2025
移动端阅览
夏韬,吴丰辉,崔庆渊.有色金属冶炼过程中降碳与烟气中CO2分离技术研究现状[J].低碳化学与化工,2025,50(12):75-86.
XIA Tao,WU Fenghui,CUI Qingyuan.Research status of carbon reduction and flue gas CO2 separation technologies in non-ferrous metal smelting processes[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(12):75-86.
夏韬,吴丰辉,崔庆渊.有色金属冶炼过程中降碳与烟气中CO2分离技术研究现状[J].低碳化学与化工,2025,50(12):75-86. DOI: 10.12434/j.issn.2097-2547.20250015.
XIA Tao,WU Fenghui,CUI Qingyuan.Research status of carbon reduction and flue gas CO2 separation technologies in non-ferrous metal smelting processes[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(12):75-86. DOI: 10.12434/j.issn.2097-2547.20250015.
针对有色金属冶炼行业日益紧迫的碳减排需求,系统综述了其全流程降碳技术的最新研究进展,包括冶炼前、冶炼中及冶炼末端等关键环节。通过对吸收法、固态吸附法和膜分离法等主流技术的对比研究,揭示了制约二氧化碳(CO
2
)分离技术工业化应用的关键因素,主要包括分离成本、工艺复杂性和产物纯度等。对此,相关研究创新性地应用液膜耦合技术和变压吸附技术,旨在提升有色金属冶炼烟气中CO
2
的分离效率,这为突破CO
2
资源化利用的技术瓶颈提供了新的解决方案,有望助力“双碳”目标的实现。
In response to the increasingly urgent carbon reduction demand of the non-ferrous metal smelting industry
the latest research progress in carbon reduction technologies across the entire smelting process was reviewed systematically
including key stages such as pre-smelting
during smelting and post-smelting. Through a comparative analysis of mainstream technologies such as absorption
solid adsorption and membrane separation methods
it identifies the key factors restricting the industrial application of carbon dioxide (CO
2
) separation technologies
mainly including separation cost
process complexity and product purity. In this regard
relevant studies have innovatively applied liquid membra
ne coupling technology and pressure swing adsorption technology
aiming to improve the separation efficiency of CO
2
from non-ferrous metal smelting flue gases. These technologies can provide new solutions to overcome the technical bottlenecks of CO
2
resource utilization and are expected to contribute to the realization of the “carbon peaking and carbon neutrality” goals.
夏宾 , 付加锋 , 张淑婷 . 有色金属行业CO 2 排放估算方法研究 [J ] . 资源开发与市场 , 2012 , 28 ( 7 ): 593 - 618 .
XIA B , FU J F , ZHANG S T . Research on CO 2 emission estimation method in nonferrous metal industry [J ] . Resource Development and Market , 2012 , 28 ( 7 ): 593 - 618 .
SHEN A X , ZHANG J H . Technologies for CO 2 emission reduction and low-carbon development in primary aluminum industry in China: A review [J ] . Renewable and Sustainable Energy Reviews , 2024 , 189 : 113965 .
BAILERA M , LISBONA P , PEÑA B , et al . A review on CO 2 mitigation in the iron and steel industry through power to X processes [J ] . Journal of CO 2 Utilization , 2021 , 46 : 101456 .
韩菲子 , 张玉清 , 李嘉欣 . 北京市未来产业之碳捕集封存利用发展及展望研究 [J ] . 中国科技投资 , 2024 , ( 15 ): 51 - 54 .
HAN F Z , ZHANG Y Q , LI J X . Research on the development and prospects of carbon capture, storage and utilization in future industries in beijing [J ] . China Venture Capital , 2024 , ( 15 ): 51 - 54 .
LI K , LIN B Q . How does administrative pricing affect energy consumption and CO 2 emissions in China? [J ] . Renewable and Sustainable Energy Reviews , 2015 , 42 : 952 - 962 .
LIN B , OMOJU O E , OKONKWO J U . Impact of industrialisation on CO 2 emissions in Nigeria [J ] . Renewable and Sustainable Energy Reviews , 2015 , 52 : 1228 - 1239 .
ISMAIL M F H , MASRI A N , RASHID N M , et al . A review of CO 2 capture for amine-based deep eutectic solvents [J ] . Journal of Ionic Liquids , 2024 , 4 ( 2 ): 100114 .
IMRAN S M , HAGHANI H , APAIYAKUL R , et al . Efficient catalytic regeneration of amine-based solvents in CO 2 capture: A comprehensive meta-analysis [J ] . Separation and Purification Technology , 2025 , 359 : 130434 .
LIU P , LIU H M , LI K K , et al . Recent advances in integrating solvent-based CO 2 capture with electrochemical regeneration process: A review [J ] . Fuel , 2025 , 385 : 133943 .
ZHANG R Y , XIE Z W , GE Q F , et al . Recent advancements in integrating CO 2 capture from flue gas and ambient air with thermal catalytic conversion for efficient CO 2 utilization [J ] . Journal of CO 2 Utilization , 2024 , 89 : 102973 .
DAGNAW F W , LI R Q , XIE Y L , et al . Recent advances on carbon capture and electrochemical CO 2 reduction with amphiphile surfactants and polymers [J ] . Journal of Environmental Chemical Engineering , 2025 : 115394 .
HOSSEINI S , MARAHEL E , BAYESTI I , et al . CO 2 adsorption on modified carbon coated monolith: Effect of surface modification by using alkaline solutions [J ] . Applied Surface Science , 2015 , 324 : 569 - 575 .
RIZZETTO A , SARTORETTI E , PIUMETTI M , et al . Novel application of Ru-based catalysts on MgAl oxides alkaline adsorbents for cyclic CO 2 methanation [J ] . Chemical Engineering Journal , 2024 , 501 : 157585 .
BARICUATRO J H , KIM Y G , KORZENIEWSKI C L , et al . Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO 2 -reduction potentials [J ] . Electrochemistry Communications , 2018 , 91 : 1 - 4 .
PASICHNYK M , STANOVSKY P , POLEZHAEV P , et al . Membrane technology for challenging separations: Removal of CO 2 , SO 2 and NO x from flue and waste gases [J ] . Separation and Purification Technology , 2023 , 323 : 124436 .
TAHERIZADEH A , SIMON A , RICHTER H , et al . Exploring the separation properties of high-Si CHA membranes for the CO 2 capturing technology: Impact of the selective layer thickness and growth mechanism [J ] . Journal of Membrane Science , 2024 , 697 : 122565 .
STANISLOWSKI J J , HOLMES M J , SNYDER A C , et al . Advanced CO 2 separation technologies: Coal gasification, warm-gas cleanup, and hydrogen separation membranes [J ] . Energy Procedia , 2013 , 37 : 2316 - 2326 .
CHABNI A , BAÑARES C , VÁZQUEZ L , et al . Combination of expeller and supercritical CO 2 for the extraction of a phenolic-rich olive oil—A preliminary chemical characterization [J ] . Journal of Industrial and Engineering Chemistry , 2025 , 125 : 1254 .
VERSTEEG F G , VERSTEEG F A , PICCHIONI F . Monomer extraction from polymers using supercritical CO 2 [J ] . Journal of CO 2 Utilization , 2024 , 89 : 102963 .
WU F H , LIU X X , QU G F , et al . A critical review on extraction of valuable metals from solid waste [J ] . Separation and Purification Technology , 2022 , 301 : 122043 .
SU Z , LI X , ZHANG Z , et al . Analysis of energy-related carbon dioxide intensity in China’s major non-ferrous metal producing regions: Spatio-temporal decomposition and emission reduction strategies [J ] . Energy , 2025 , 314 : 134299 .
IMRAN M , ZAMAN K , NASSANI A A , et al . Does nuclear energy reduce carbon emissions despite using fuels and chemicals? Transition to clean energy and finance for green solutions [J ] . Geoscience Frontiers , 2024 , 15 ( 4 ): 101608 .
GOREN A Y , DINCER I , GOGOI S B , et al . Recent developments on carbon neutrality through carbon dioxide capture and utilization with clean hydrogen for production of alternative fuels for smart cities [J ] . International Journal of Hydrogen Energy , 2024 , 79 : 551 - 578 .
ZHANG C L , LIU C T , LI X R , et al . A novel clean combustion technology for solid fuels to efficiently reduce gaseous and particulate emissions [J ] . Journal of Cleaner Production , 2021 , 320 : 128864 .
AMELKOVICH Y A , MOSTOVSHCHIKOV A V , NAZARENKO O B . Effect of non-uniform magnetic field on combustion products of aluminum nanopowder in mixture with titanium and zirconium dioxides [J ] . Materials Letters , 2023 , 346 : 134550 .
SU K , OUYANG Z , LI S , et al . Exploration on deep pulverized coal activation and ultra-low NO x emission strategies with novel purifying-combustion technology [J ] . Energy , 2024 , 313 : 133814 .
SU K , OUYANG Z , WANG H , et al . Effects of activated fuel and staged secondary air distributions on purification, combustion and NO x emission characteristics of pulverized coal with purification-combustion technology [J ] . Energy , 2024 , 302 : 131883 .
NEMA A , KUMAR A , WARUDKAR V . An in-depth critical review of different carbon capture techniques: Assessing their effectiveness and role in reducing climate change emissions [J ] . Energy Conversion and Management , 2025 , 323 : 119244 .
HUANG H , ZHOU Z , WU W T , et al . XCT images-based modeling for elucidating electrochemical inert phase-dependent multiscale electrode kinetic behaviors [J ] . Energy Storage Materials , 2024 , 73 : 103792 .
XU Y B , TIAN Y , GUO S , et al . Recycling of valuable metals from spent ternary Li-ion batteries for the multi-active site electrocatalysts with high-entropy coordination [J ] . Applied Catalysis B: Environment and Energy , 2025 , 365 : 124976 .
GOLZAR A M , BAHALOO H N , POURHOSSEIN F , et al . Pathway to industrial application of heterotrophic organisms in critical metals recycling from e-waste [J ] . Biotechnology Advances , 2024 , 77 : 108438 .
ZHANG Y , YANG Y T , GUO D F , et al . Synergistic environmental benefits from copper slag recycling in China: Pollutant mitigation and carbon reduction [J ] . Journal of Environmental Management , 2024 , 370 : 122907 .
陈薪光 . 浅谈海外铜冶炼企业节能减排降碳管理实践与探索 [J ] . 有色矿冶 , 2024 , 40 ( 3 ): 58 - 60 .
CHEN X G . Reduction and carbon reduction management for overseas copper smelting enterprises [J ] . Non-ferrous Mining and Metallurgy , 2024 , 40 ( 3 ): 58 - 60 .
程珩 , 陈立新 . “富氧燃烧+气化炉”在水泥炉窑节能减碳领域的应用 [J ] . 中国建材 , 2022 , ( 2 ): 126 - 129 .
CHENG H , CHEN L X . Application of oxygen-enriched combustion + gasifier in energy saving and carbon reduction of cement kiln [J ] . China Building Materials , 2022 , ( 2 ): 126 - 129 .
BHUTTO A W , BAZMI A A , ZAHEDI G . Underground coal gasification: From fundamentals to applications [J ] . Progress in Energy and Combustion Science , 2013 , 39 ( 1 ): 189 - 214 .
MUELLER L F , TZIMAS E , KALTSCHMITT M , et al . Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term [J ] . International Journal of Hydrogen Energy , 2007 , 32 ( 16 ): 3797 - 3810 .
ROCHELLE G T . Amine Scrubbing for CO 2 Capture [J ] . Science , 2009 , 325 ( 5948 ): 1652 - 1654 .
ZHANG H , SUN Z , HU Y H . Steam reforming of methane: Current states of catalyst design and process upgrading [J ] . Renewable and Sustainable Energy Reviews , 2021 , 149 : 111330 .
ALEXANDER C , JOHTO H , LINDGREN M , et al . Comparison of environmental performance of modern copper smelting technologies [J ] . Cleaner Environmental Systems , 2021 , 3 : 100052 .
徐忆明 . 铜冶炼产品碳足迹核算方法与优化路径 [J ] . 有色金属工程 , 2024 , 14 ( 8 ): 67 - 76 .
XU Y M . Calculation method and optimization path of carbon footprint of copper smelting products [J ] . Nonferrous Metals Engineering , 2024 , 14 ( 8 ): 67 - 76 .
李劼 , 黄小卫 , 刘桂华 , 等 . 铝冶炼低碳清洁智能化创新发展研究 [J ] . 中国工程科学 , 2024 , 26 ( 5 ): 223 - 233 .
LI J , HUANG X W , LIU G H , et al . Innovative development of low-carbon,clean,and intelligent aluminum metallurgy [J ] . Strategic Study of CAE , 2024 , 26 ( 5 ): 223 - 233 .
LONG Q , LI J Q , CHEN C Y , et al . Optimization of iron and aluminum recovery in bauxite [J ] . Journal of Iron and Steel Research International , 2020 , 27 ( 3 ): 310 - 318 .
ZHANG Y , TU Z K . Flow-field design of the bipolar plates in polymer electrolyte membrane fuel cell: Problem, progress, and perspective [J ] . Applications in Energy and Combustion Science , 2024 , 17 : 100244 .
WU F H , CHEN D D , NIU Q , et al . Current status of phosphoric acid preparation technology and future application directions of microbial methods [J ] . Sustainable Chemistry and Pharmacy , 2025 , 43 : 101882 .
ZHANG S M , ZHOU T , LI C R , et al . Research progress and prospect of fluidized bed metallic ore roasting technology: A review [J ] . Fuel , 2024 , 378 : 132717 .
KHANMOHAMMADI S , SAADAT-TARGHI M . Energy and exergy analyses and multi-criteria optimization of a novel waste heat recovery system in the cement factory for cleaner product [J ] . Journal of Environmental Chemical Engineering , 2025 : 115417 .
AO X , ZHANG J , YAN R J , et al . More flexibility and waste heat recovery of a combined heat and power system for renewable consumption and higher efficiency [J ] . Energy , 2025 , 315 : 134392 .
KASAEIAN A , AFSHARI F , MAHMOUDKHANI M , et al . Waste heat recovery by thermodynamic cycles in cement plants: A review [J ] . Energy , 2025 , 314 : 134087 .
HAITAO W , KEKE L , ZUDE C . Thermal environment and waste heat recovery of high-radiant heat workshop [J ] . Journal of Building Engineering , 2024 , 98 : 111014 .
DEEPAK G , SUDHA L , PAULINE S , et al . Thermodynamic modeling and AI-enhanced optimization of a novel tri-level waste heat recovery system for industrial processes [J ] . Thermal Science and Engineering Progress , 2024 , 56 : 103098 .
WU F H , LIU X X , QU G F . High value-added resource utilization of solid waste: Review of prospects for supercritical CO 2 extraction of valuable metals [J ] . Journal of Cleaner Production , 2022 , 372 : 133813 .
JIN W , YANG S H , TANG C B , et al . Green and short smelting process of bismuth sulphide concentrate with pyrite cinder [J ] . Journal of Cleaner Production , 2022 , 377 : 134348 .
ABDALLA S A , ABDULLAH S S , KASSEM A M . An adaptive frame and intelligent control approach for an autonomous hybrid renewable energy technology consisting of PV, wind, and fuel cell innovation [J ] . Alexandria Engineering Journal , 2025 , 114 : 279 - 291 .
WANG H P . Application of new features based on artificial intelligent robot technology in medium-scale urban design pedigree and intelligent management and control [J ] . Intelligent Systems with Applications , 2024 , 22 : 200379 .
YAO Y J , ZHANG P X , SUN F , et al . More resilient polyester membranes for high-performance reverse osmosis desalination [J ] . Science , 2024 , 384 ( 6693 ): 333 - 338 .
CHEN B , YU X , DONG F Q , et al . The application of intelligent control technology for the evaluation of temperature segregation in asphalt mixture paving [J ] . Construction and Building Materials , 2023 , 366 : 130178 .
徐盛华 , 张建玲 . 铅锌冶炼企业实现生态化低碳发展模式 [J ] . 中国矿业 , 2012 , 21 ( 7 ): 45 - 48 .
XU S H , ZHANG J L . Smelting corporation of lead and zinc to achieve ecological and low-carbon development model [J ] . China Mining Magazine , 2012 , 21 ( 7 ): 45 - 48 .
吴思 , 赫佳琳 , 唐思扬 , 等 . 搅拌式反应器用于测定乙醇胺溶液吸收CO 2 动力学研究 [J ] . 应用化工 , 2025 , 54 ( 2 ): 322 - 329+335 .
WU S , HE J L , TANG S Y , et al . Study on the kinetics of CO 2 absorption using MEA solution in stirred tank reactor [J ] . Applied Chemical Industry , 2025 , 54 ( 2 ): 322 - 329+335 .
王克华 , 夏祖虎 , 苏远库 , 等 . 低温甲醇洗装置尾气治理方案选择及应用 [J ] . 中国环保产业 , 2025 , ( 1 ): 57 - 60 .
WANG K H , XIA Z H , SU Y K , et al . Engineering application analysis of multi-zone coupling depth efficiency improvement technology of electrostatic precipitator [J ] . China Environmental Protection Industry , 2025 , ( 1 ): 57 - 60 .
DU J X , YANG W , XU L L , et al . Review on post-combustion CO 2 capture by amine blended solvents and aqueous ammonia [J ] . Chemical Engineering Journal , 2024 , 488 : 150954 .
XING H Y , YU F , LI X H , et al . Application of ionic liquids in CO 2 capture and conversion: A review [J ] . Separation and Purification Technology , 2025 , 360 : 130981 .
KIM S , SHI H , LEE J Y . CO 2 absorption mechanism in amine solvents and enhancement of CO 2 capture capability in blended amine solvent [J ] . International Journal of Greenhouse Gas Control , 2016 , 45 : 181 - 188 .
JACKSON P , ROBINSON K , PUXTY G , et al . In situ Fourier transform-infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine solutions [J ] . Energy Procedia , 2009 , 1 ( 1 ): 985 - 994 .
ZHOU X B , LIU C , FAN Y M , et al . Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics [J ] . Energy , 2022 , 255 : 124570 .
LIU W , HUANG Y , ZHANG X J , et al . Heat pump assisted sorption carbon capture with steam condenser heat recovery in a decarbonised coal-fired power plant [J ] . Energy Conversion and Management , 2024 , 319 : 118919 .
MARJANIAN M M , SHAHHOSSEINI S , ANSARI A . Investigation of the ultrasound assisted CO 2 absorption using different absorbents [J ] . Process Safety and Environmental Protection , 2021 , 149 : 277 - 288 .
AGHEL B , JANATI S , ALOBAID F , et al . Application of nanofluids in CO 2 absorption: A Review [J ] . Applied Sciences , 2022 , 12 ( 6 ): 3200 .
PAN S Y , CHUNG T C , HO C C , et al . CO 2 mineralization and utilization using steel slag for establishing a waste-to-resource supply chain [J ] . Scientific Reports , 2017 , 7 ( 1 ): 17227 .
DINDI A , QUANG D V , VEGA L F , et al . Applications of fly ash for CO 2 capture, utilization, and storage [J ] . Journal of CO 2 Utilization , 2019 , 29 : 82 - 102 .
LI Z , SHAN H W , QIN X R , et al . Efficient CO 2 capture from flue gases achieving by an electrochemical reactor with porous solid-state electrolyte [J ] . Chemical Engineering Journal , 2025 : 159468 .
ISLAM M A , BAO H , SAHA B B , et al . Improved CO 2 capture capacity of waste sawmill dust derived activated carbon employing novel high-pressure CO 2 activation [J ] . Thermal Science and Engineering Progress , 2024 , 56 : 103075 .
KONG M , SONG L J , LIAO H P , et al . A review on development of post-combustion CO 2 capture technologies: Performance of carbon-based, zeolites and MOFs adsorbents [J ] . Fuel , 2024 , 371 : 132103 .
KIM D Y , BAE W B , MIN H , et al . Sodium cation exchanged zeolites for direct air capture of CO 2 [J ] . Applied Surface Science Advances , 2025 , 25 : 100664 .
MAJCHRZAK-KUCĘBA I , WAWRZYŃCZAK D , ŚCIUBIDŁO A . Experimental investigation into CO 2 capture from the cement plant by VPSA technology using zeolite 13X and activated carbon [J ] . Journal of CO 2 Utilization , 2022 , 61 : 102027 .
KAZEMI A , PORDSARI M A , TAMTAJI M , et al . Eco-friendly synthesis and morphology control of MOF-74 for exceptional CO 2 capture performance with DFT validation [J ] . Separation and Purification Technology , 2025 , 361 : 131328 .
SHENG M J , ZHANG X , CHENG H Y , et al . Multi-criteria computational screening of [BMIM ] [DCA ] @MOF composites for CO 2 capture [J ] . Green Chemical Engineering , 2024 , 125 : 23415 .
WANG X , LIU Y X , DAI H X , et al . MOFs-base d porous liquids for CO 2 capture and utilization [J ] . Green Energy & Environment , 2025 , 45 : 3211 .
SHI X Y , LEE G A , LIU S H , et al . Water-stable MOFs and hydrophobically encapsulated MOFs for CO 2 capture from ambient air and wet flue gas [J ] . Materials Today , 2023 , 65 : 207 - 226 .
LUO W J , LI H , JIN M H , et al . Organic frameworks (MOFs, COFs, and HOFs) based membrane materials for CO 2 gas-selective separation: A systematic review [J ] . Separation and Purification Technology , 2025 , 357 : 130195 .
JIANG Y X , CHEN J , CHEN F Q , et al . Synergistic enhancement of Ca-based materials via CeO 2 and Al 2 O 3 co-doping for enhanced CO 2 capture and thermochemical energy storage in calcium looping technology [J ] . Separation and Purification Technology , 2025 , 358 : 130264 .
ZANG P C , TANG J Y , TAO Y H , et al . K 2 CO 3 -doped CaO-based sorbent for CO 2 capture: Performance studies and promotion mechanisms [J ] . Chemical Engineering Journal , 2025 , 505 : 159233 .
ZHOU J X , ZHANG W W , DANG C X , et al . Effect of porous structure on Ni-CaO bifunctional catalysts for the integrated CO 2 capture and methanation process [J ] . Separation and Purification Technology , 2025 , 359 : 130833 .
NIU M Y , YANG H M , ZHANG X C , et al . Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO 2 capture [J ] . ACS Applied Materials & Interfaces , 2016 , 8 ( 27 ): 17312 - 17320 .
SANNA A , UIBU M , CARAMANNA G , et al . A review of mineral carbonation technologies to sequester CO 2 [J ] . Chemical Society Reviews , 2014 , 43 ( 23 ): 8049 - 8080 .
HUIJGEN W J J , WITKAMP G J , COMANS R N J . Mineral CO 2 sequestration by steel slag carbonation [J ] . Environmental Science & Technology , 2005 , 39 ( 24 ): 9676 - 9682 .
PAN S Y , CHEN Y H , FAN L S , et al . CO 2 mineralization and utilization by alkaline solid wastes for potential carbon reduction [J ] . Nature Sustainability , 2020 , 3 ( 5 ): 399 - 405 .
LIANG C Z , FENG F , WU J , et al . Elevating gas separation performance of Pebax-based membranes by blending with a PDMS-PEO block copolymer for CO 2 capture and separation [J ] . Journal of Membrane Science , 2025 , 716 : 123528 .
CHENAR M P , SOLTANIEH M , MATSUURA T , et al . Application of Cardo-type polyimide (PI) and polyphenylene oxide (PPO) hollow fiber membranes in two-stage membrane systems for CO 2 /CH 4 separation [J ] . Journal of Membrane Science , 2008 , 324 ( 1 ): 85 - 94 .
QIN Z K , WEI J , WU Y M , et al . Mixed matrix membranes (MMMs) fabricated via ultrathin Cu-MOF nanosheets for CO 2 /N 2 separation: Low loading but high performance [J ] . Results in Engineering , 2024 , 24 : 103184 .
FAVRE E . Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? [J ] . Journal of Membrane Science , 2007 , 294 ( 1 ): 50 - 59 .
WILEY D E , FLETCHER D F . Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes [J ] . Desalination , 2002 , 145 ( 1 ): 183 - 186 .
SENGUPTA A , RAGHURAMAN B , SIRKAR K K . Liquid membranes for flue gas desulfurization [J ] . Journal of Membrane Science , 1990 , 51 ( 1 ): 105 - 126 .
CHOI S , DRESE J H , JONES C W . Adsorbent materials for carbon dioxide capture from large anthropogenic point sources [J ] . ChemSusChem , 2009 , 2 ( 9 ): 796 - 854 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution
蜀公网安备51012202001533