浏览全部资源
扫码关注微信
1.中煤昔阳能源有限责任公司白羊岭煤矿,山西 晋中 045300
2.清华大学 山西清洁能源研究院,山西 太原 030032
3.太原理工大学 化学与化工学院,山西 太原 030024
4.怀柔实验室山西研究院,山西 太原 030032
Received:11 December 2024,
Revised:2025-02-10,
Published:25 September 2025
移动端阅览
吕人杰,樊昱辰,刘祎琳等.锰氧化物的低浓度甲烷催化氧化性能研究[J].低碳化学与化工,2025,50(09):10-16.
LV Renjie,FAN Yuchen,LIU Yilin,et al.Study on catalytic oxidation performance of manganese oxides for low concentration methane[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(09):10-16.
吕人杰,樊昱辰,刘祎琳等.锰氧化物的低浓度甲烷催化氧化性能研究[J].低碳化学与化工,2025,50(09):10-16. DOI: 10.12434/j.issn.2097-2547.20240491.
LV Renjie,FAN Yuchen,LIU Yilin,et al.Study on catalytic oxidation performance of manganese oxides for low concentration methane[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(09):10-16. DOI: 10.12434/j.issn.2097-2547.20240491.
煤矿开采过程中的风排瓦斯是重要的甲烷排放源,由于甲烷浓度低、排量大等特点造成其规模化处理难度较大。催化氧化技术能够在较低温度下有效去除低浓度甲烷,该技术的关键在于研发低成本、高性能的催化剂。选用不同价态和晶型的锰氧化物作为催化剂,在固定床中探究了其对低浓度甲烷的催化氧化性能,利用TG、XRD、SEM、XPS和H
2
-TPR等手段对催化剂的理化性质进行了表征分析并探讨了可能的反应机理。结果表明,MnO
2
(
β
-MnO
2
)相较于Mn
2
O
3
具有更高的催化活性,MnO
2
的起活温度(
t
10
)和完全氧化温度(
t
90
)分别为365 ℃和505 ℃,显著低于Mn
2
O
3
(
t
10
= 655 ℃,
t
90
= 795 ℃)。TG分析表明MnO
2
在550 ℃以上会逐渐失氧转变为Mn
2
O
3
,这可能会导致催化剂的活性发生变化。在同一价态下,
α-
MnO
2
较
β
-MnO
2
具有更高的甲烷催化氧化性能,
α-
MnO
2
的
t
90
为433 ℃。H
2
-TPR分
析表明
α-
MnO
2
具有较低的还原温度,晶格氧活性更强。
α-
MnO
2
在550 ℃下经过24 h的反应后甲烷转化率下降了近8%,这表明未来仍需进一步提升锰氧化物的稳定性。本研究可为经济高效锰基催化剂的开发提供参考。
The ventilation air methane emitted during coal mining is a significant source of methane emissions. Due to the low concentration and large emission of methane
its large-scale treatment is difficult. Catalytic oxidation technology can effectively remove low-concentration methane at relatively low temperatures
with a key focus on developing low-cost and high-performance catalysts. Manganese oxides with different oxidation valance states and crystal phases were investigated to explore the catalytic oxidation performances of low concentration methane in a fixed-bed reactor. TG
XRD
SEM
XPS and H
2
-TPR were used to characterize and analyze the physicochemical properties of catalysts and explore the possible reaction mechanisms. The results show that MnO
2
(
β
-MnO
2
) has higher catalytic activity than Mn
2
O
3
and the activation temperature (
t
10
) and complete oxidation temperature (
t
90
) of MnO
2
are 365 ℃ and 505 ℃
respectively
which are significantly lower than those of Mn
2
O
3
(
t
10
= 655 ℃
t
90
= 795 ℃). TG analysis shows that MnO
2
gradually losts oxygen and transforms into Mn
2
O
3
above 550 ℃
which may affect the activity of catalysts. At the same valence state
α
-MnO
2
demonstrates superior methane catalytic oxidation performance compared to
β
-MnO
2
.
t
90
of
α
-MnO
2
is 433 ℃. The H
2
-TPR results shows that
α
-MnO
2
has a lower reducing temperature and thus higher lattice oxygen activity. After 24 h r
eaction at 550 ℃
the methane conversion rate of
α
-MnO
2
decreases by approximately 8%
indicating that further improvements are needed to enhance the stability of manganese oxides catalysts. This study can provide reference for the development of cost-effective manganese-based catalysts for methane oxidation.
杨仲卿 , 张力 , 唐强 . 超低浓度煤层气能源化利用技术研究进展 [J ] . 天然气工业 , 2010 , 30 ( 2 ): 115 - 118 .
YANG Z Q , ZHANG L , TANG Q . Research progress in the utilization of ventilation air methane as an energy source [J ] . Natural Gas Industry , 2010 , 30 ( 2 ): 115 - 118 .
NIU H Y , ZHU H L , WANG G D , et al . A review of the mechanisms and control technologies of coal and gas outbursts: Recent advances and future perspectives [J ] . Energy and Fuels , 2024 , 38 ( 24 ): 23230 - 23245 .
CUI S D , SHI Q M , QIN Y , et al . The behavior and model of methane adsorption on coal by ultrasonic enhancement [J ] . Fuel , 2024 , 377 : 132795 .
CHEN Y T . Development of coal slime drying system with the low concentration coal bed methane regenerative oxidation [J ] . Academic Journal of Science and Technology , 2024 , 8 ( 2 ): 111 - 113 .
LIU Y H , LI X J , XIAO Q , et al . Simulation study on catalytic oxidation of low concentration mine gas in an oxidation device [J ] . Scientific Reports , 2025 , 25 : 1 - 15 .
黄鑫 , 焦熙 , 黄国宝 , 等 . 甲烷催化燃烧钯基催化剂研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 5 ): 147 - 154 .
HUANG X , JIAO X , HUANG G B , et al . Research progress on Pd-based catalysts for methane catalytic combustion [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 5 ): 147 - 154 .
楚培齐 , 王赛飞 , 赵世广 , 等 . 甲烷催化燃烧反应机理及催化剂研究进展 [J ] . 燃料化学学报 , 2022 , 50 ( 2 ): 180 - 194 .
CHU P F , WANG S F , ZHAO S G , et al . Research progress of reaction mechanism and catalysts on catalytic methane combustion [J ] . Journal of Fuel Chemistry and Technology , 2022 , 50 ( 2 ): 180 - 194 .
YANG J Y , MI P , REN G Q , et al . A hydrothermally stable irreducib le oxide-modified Pd/MgAl 2 O 4 catalyst for methane combustion [J ] . Angewandte Chemie International Edition , 2020 , 132 ( 42 ): 18680 - 18684 .
WANG W Y , ZHOU W , LI W , et al . In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability [J ] . Applied Catalysis B: Environmental , 2020 , 276 : 119142 .
WANG X F , LIU Y Y , GE W , et al . Complete oxidation of lean methane over metal oxide supported Pd catalysts: Current advancement and future perspectives [J ] . Journal of Environmental Chemical Engineering , 2023 , 11 : 110712 .
FENG X B , JIANG L , LI D Y , et al . Progress and key challenges in catalytic combustion of lean methane [J ] . Journal of Energy Chemistry , 2022 , 75 : 173 - 215 .
HU L H , PENG Q , LI Y D . Selective synthesis of Co 3 O 4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion [J ] . Journal of the American Chemical Society , 2008 , 130 ( 48 ): 16136 - 16137 .
PU Z Y , LIU Y , ZHOU H , et al . Catalytic combustion of lean methane at low temperature over ZrO 2 -modified Co 3 O 4 catalysts [J ] . Applied Surface Science , 2017 , 422 : 85 - 93 .
FENG Y Z , ZHENG X L . Copper ion enhanced synthesis of nanostructured cobalt oxide catalyst for oxidation of methane [J ] . ChemCatChem , 2012 , 4 ( 10 ): 1551 - 1554 .
TAO F F , SHAN J , NGUYEN L , et al . Understanding complete oxidation of methane on spinel oxides at a molecular level [J ] . Nature Communications , 2015 , 6 ( 1 ): 7798 .
HUANG F , WANG X D , WNAG A Q , et al . A two-step synthesis of Fe-substituted hexaaluminates with enhanced surface area and activity in methane catalytic combustion [J ] . Catalysis Science and Technology , 2016 , 6 ( 13 ): 4962 - 4969 .
LI D Y , LI K Z , XU R D , et al . Ce 1- x Fe x O 2- δ catalysts for catalytic methane combustion: Role of oxygen vacancy and structural dependence [J ] . Catalysis Today , 2018 , 318 : 73 - 85 .
YE Y C , ZHAO Y T , NI L L , et al . Facile synthesis of unique NiO nanostructures for efficiently catalytic conversion of CH 4 at low temperature [J ] . Applied Surface Science , 2016 , 362 : 20 - 27 .
HUANG X H , LI J F , WANG J , et al . Catalytic combustion of methane over a highly active and stable NiO/CeO 2 catalyst [J ] . Frontiers of Chemical Science and Engineering , 2020 , 14 : 534 - 545 .
KRUK I , PAWEL Z , WOUNTER V B , et al . Coupled commensurate cation and charge modulation in the tunneled structure, Na 0.40(2) MnO 2 [J ] . Journal of the American Chemical Society , 2011 , 133 ( 35 ): 13950 - 13956 .
KIM E J , LEE C S , CHANG Y Y , et al . Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems [J ] . ACS Applied Materials and Interfaces , 2013 , 5 ( 19 ): 9628 - 9634 .
ZHANG L W , LIAN J S , WU L Y , et al . Synthesis of a thin-layer MnO 2 nanosheet-coated Fe 3 O 4 nanocomposite as a magnetically separable photocatalyst [J ] . Langmuir , 2014 , 30 ( 23 ): 7006 - 7013 .
MALLAKPOUR S P , MARYAM M . Use of valine amino acid functionalized α -MnO 2 /chitosan bionanocomposites as potential sorbents for the removal of lead(II) ions from aqueous solution [J ] . Industrial and Engineering Chemistry Research , 2016 , 55 ( 30 ): 8349 - 8356 .
CAO J , MAO Q H , SHI L , et al . Fabrication of γ -MnO 2 / α -MnO 2 hollow core/shell structures and their application to water treatment [J ] . Journal of Materials Chemistry , 2011 , 21 ( 40 ): 16210 - 16215 .
DAS S , ARANB S , SUBHRA J . Light-assisted synthesis of hierarchical flower-like MnO 2 nanocomposites with solar light induced enhanced photocatalytic activity [J ] . ACS Sustainable Chemistry and Engineering , 2017 , 5 ( 10 ): 9086 - 9094 .
WANG F , DAI H G , DENG J G , et al . Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: Highly effective catalysts for the removal of toluene [J ] . Environmental Science and Technology , 2012 , 46 ( 7 ): 4034 - 4041 .
SAPURTA E , SYAIFULLIA M , SUN H Q , et al . Different crystallographic one-dimensional MnO 2 nanomaterials and their superior performance in catalytic phenol degradation [J ] . Environmental Science and Technology , 2013 , 47 ( 11 ): 5882 - 5887 .
SATHIS M , SATOSHI M , TAKAAKI T , et al . MnO 2 assisted oxidative polymerization of aniline on graphene sheets: Superior nanocomposite electrodes for electrochemical supercapacitors [J ] . Journal of Materials Chemistry , 2011 , 21 ( 40 ): 16216 - 16222 .
PAREDES J R , EVA D , FERNANDO V D , et al . Combustion of methane in lean mixtures over bulk transition-metal oxides: Evaluation of the activity and self-deactivation [J ] . Energy and Fuels , 2009 , 23 ( 1 ): 86 - 93 .
RAMESH K , CHEN L W I , CHEN F X , et al . Preparation and characterization of coral-like nanostructured α -Mn 2 O 3 catalyst f or catalytic combustion of methane [J ] . Catalysis Communications , 2007 , 8 ( 9 ): 1421 - 1426 .
ZHANG K , PENG X B , CAO Y N , et al . Effect of MnO 2 morphology on its catalytic performance in lean methane combustion [J ] . Materials Research Bulletin , 2019 , 111 : 338 - 341 .
RUWTSCHI P , GIOVANILI R . Cation vacancies in MnO 2 and their influence on electrochemical reactivity [J ] . Journal of the Electrochemical Society , 1988 , 135 ( 11 ): 2663 .
李治东 , 万佳琪 , 刘莹 , 等 . 一步法合成 α -MnO 2 / β -MnO 2 催化剂及其对甲苯催化氧化的性能研究 [J ] . 化工学报 , 2022 , 73 ( 8 ): 3615 - 3624 .
LI Z D , WAN J Q , LIU Y , et al . α -MnO 2 / β -MnO 2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene [J ] . CIESC Journal , 2022 , 73 ( 8 ): 3615 - 3624 .
MUSIL M , BOKKYU C , ATSUSHI T . Morphology and electrochemical properties of α -, β -, γ -, and δ -MnO 2 synthesized by redox method [J ] . Journal of the Electrochemical Society , 2015 , 162 ( 10 ): A2058 - A2065 .
HAN , Y F , CHEN L , RAMESH , K , et al . Kinetic and spectroscopic study of methane combustion over α -Mn 2 O 3 nanocrystal catalysts [J ] . Journal of Catalysis , 2008 , 253 ( 2 ): 261 - 268 .
LU S , ZHENG F , WANG H , et al . Engineering MnO 2 nanotubes@Co 3 O 4 polyhedron composite with cross-linked network structure for efficient catalytic oxidation of formaldehyde [J ] . Catalysis Letters , 2023 , 154 ( 6 ): 2949 - 2962 .
GAO Y , JIANG M , YANG L , et al . Recent progress of catalytic methane combustion over transition metal oxide catalysts [J ] . Frontiers in Chemistry , 2022 , 10 : 959422 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution