

浏览全部资源
扫码关注微信
1.中国石油天然气管道工程有限公司,河北 廊坊 065099
2.中国矿业大学 材料与物理学院,江苏 徐州 221008
3.中国矿业大学 碳中和研究院,江苏 徐州 221008
4.中国矿业大学 化工学院,江苏 徐州 221008
Received:23 November 2024,
Revised:2024-12-25,
Published:25 November 2025
移动端阅览
孟凡鹏,董琦,安永胜等.碳基材料在CO2捕集中应用的研究进展[J].低碳化学与化工,2025,50(11):97-109.
MENG Fanpeng,DONG Qi,AN Yongsheng,et al.Research progress of application of carbon-based materials for CO2 capture[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):97-109.
孟凡鹏,董琦,安永胜等.碳基材料在CO2捕集中应用的研究进展[J].低碳化学与化工,2025,50(11):97-109. DOI: 10.12434/j.issn.2097-2547.20240467.
MENG Fanpeng,DONG Qi,AN Yongsheng,et al.Research progress of application of carbon-based materials for CO2 capture[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(11):97-109. DOI: 10.12434/j.issn.2097-2547.20240467.
随着全球气候变化问题的日益严重,CO
2
排放控制成为关注的重点。碳基燃料燃烧过程是CO
2
排放的主要来源之一,开发高效的CO
2
捕集技术对减缓温室效应具有重要意义。近年来,基于碳基材料的CO
2
捕集技术受到越来越多的关注。对CO
2
捕集(燃烧后捕集)用碳基材料的研究进展进行了综述,重点分析了碳基材料的CO
2
捕集机理,主要包括物理吸附、化学吸附和气体交换等。总结了不同类型碳基材料的特性及其在CO
2
捕集中的应用,并分析了不同改性方法对生物炭CO
2
捕集性能的影响。最后对碳基材料在CO
2
捕集中存在的技术瓶颈和未来发展方向进行了分析和展望。
With the increasing severity of the global climate change problem
CO
2
emission control has become the focus of attention. Combustion process of carbon-based fuel is one of the main sources of CO
2
emission
and the development of efficient CO
2
capture technology is of great significance to mitigate the greenhouse effect. In recent years
CO
2
capture technologies based on carbon-based materials have received increasing attention. Research progress of carbon-based materials for CO
2
capture (post-combustion capture) was reviewed
focusing on analyzing the CO
2
capture mechanisms of carbon-based materials
mainly including physical adsorption
chemical adsorption and gas exchange
etc. The characteristics of different types of carbon-based materials and their applications for CO
2
capture were summarized
and the effects of different modification methods on the CO
2
capture performance of biochar were analyzed. Finally
the technical bottlenecks and future development directions of carbon-based materials for CO
2
capture were analyzed and prospected.
水煮花生 . 联合国政府间气候变化专门委员会第六次综合评估报告发布 [J ] . 科学 , 2023 , 75 ( 3 ): 10 .
BOILED PEANUTS . Sixth integrated assessment report of the United Nations Intergovernmental Panel on Climate Change released [J ] . Science , 2023 , 75 ( 3 ): 10 .
陈诗一 . 能源消耗、 二氧化碳排放与中国工业的可持续发展 [J ] . 经济研究 , 2009 , 4 ( 4 ): 41 - 55 .
CHEN S Y . Energy consumption,CO 2 emission and sustainable development in Chinese Industry [J ] . Economic Research , 2009 , 4 ( 4 ): 41 - 55 .
向国育 , 申长俊 , 陆诗建 , 等 . 二氧化碳捕集、利用与封存示范工程进展 [J ] . 低碳化学与化工 , 2025 , 50 ( 3 ): 113 - 122 .
XIANG G Y , SHEN C J , LU S J , et al . Progress of carbon dioxide capture, utilization and storage demonstration engineerings [J ] . Low-Carbon Chemistry and Chemical Engineering , 2025 , 50 ( 3 ): 113 - 122 .
WILBERFORCE T , BAROUTAJI A , SOUDAN B , et al . Outlook of carbon capture technology and challenges [J ] . Science of the Total Environment , 2019 , 657 : 56 - 72 .
ZAKER A , BEN-HAMMOUDA S , SUN J , et al . Carbon-based materials for CO 2 capture: Their production, modification and performance [J ] . Journal of Environmental Chemical Engineering , 2023 , 11 ( 3 ): 109741 .
ISAH M , LAWAL R , ONAIZI S A . CO 2 capture and conversion using graphene-based materials: A review on recent progresses and future outlooks [J ] . Green Chemical Engineering , 2024 .
DENG M , PARK H G . Spacer-assisted amine-coiled carbon nanotubes for CO 2 capture [J ] . Langmuir , 2019 , 35 ( 13 ): 4453 - 4459 .
ZHANG Y , GAO J M , FENG D D , et al . Study on regenerative process of the new carbon capture technique based on antisolvent crystallization to strengthen crystallization [J ] . The Canadian Journal of Chemical Engineering , 2017 , 95 ( 10 ): 1979 - 1984 .
CREAMER A E , GAO B . Carbon-based adsorbents for post-combustion CO 2 capture: A critical review [J ] . Environmental Science & Technology , 2016 , 50 ( 14 ): 7276 - 7289 .
WEI H R , DENG S B , HU B Y , et al . Granular bamboo-derived activated carbon for high CO 2 adsorption: The dominant role of narrow micropores [J ] . ChemSusChem , 2012 , 5 ( 12 ): 2354 - 2360 .
ZHOU Y B , TAN P , HE Z Q , et al . CO 2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment [J ] . Fuel , 2022 , 311 : 122507 .
LIU S , YANG H B , HUANG X , et al . Identifying active sites of nitrogen-doped carbon materials for the CO 2 reduction reaction [J ] . Advanced Functional Materials , 2018 , 28 ( 21 ): 1800499 .
GUNAWARDENE O H P , GUNATHILAKE C A , VIKRANT K , et al . Carbon dioxide capture through physical and chemical adsorption using porous carbon materials: A review [J ] . Atmosphere , 2022 , 13 ( 3 ): 397 .
HONG S M , CHOI S W , KIM S H , et al . Porous carbon based on polyvinylidene fluoride: Enhancement of CO 2 adsorption by physical activation [J ] . Carbon , 2016 , 99 : 354 - 360 .
LIU F Y , WANG Z X , ZHANG H T , et al . Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin [J ] . Carbon , 2019 , 149 : 105 - 116 .
SCHNEIDERMANN C , KENSY C , OTTO P , et al . Nitrogen-doped biomass-derived carbon formed by mechanochemical synthesis for lithium-sulfur batteries [J ] . ChemSusChem , 2019 , 12 ( 1 ): 310 - 319 .
QIAN W J , SUN F X , XU Y H , et al . Human hair-derived carbon flakes for electrochemical supercapacitors [J ] . Energy & Environmental Science , 2014 , 7 ( 1 ): 379 - 386 .
FERRERO G A , FUERTES A B , SEVILLA M . From Soybean residue to advanced supercapacitors [J ] . Scientific Reports , 2015 , 5 ( 1 ): 16618 .
RANA M , SUBRAMANI K , SATHISH M , et al . Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO 2 capture [J ] . Carbon , 2017 , 114 : 679 - 689 .
NIE R F , PENG X L , ZHANG H F , et al . Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst [J ] . Catalysis Science & Technology , 2017 , 7 ( 3 ): 627 - 634 .
SHENG W Z , LI Z J , LIU Y H . Surface chemical functional groups modification of porous carbon [J ] . Recent Patents on Chemical Engineering , 2008 , 1 ( 1 ): 27 - 40 .
CUI G K , WANG J J , ZHANG S J . Active chemisorption sites in functionalized ionic liquids for carbon capture [J ] . Chemical Society Reviews , 2016 , 45 ( 15 ): 4307 - 4339 .
BABU D J , BRUNS M , SCHNEIDER R , et al . Understanding the influence of N-doping on the CO 2 adsorption characteristics in carbon nanomaterials [J ] . The Journal of Physical Chemistry C , 2017 , 121 ( 1 ): 616 - 626 .
ZHAO J , DENG S , ZHAO L , et al . Understanding the effect of H 2 O on CO 2 adsorption capture: Mechanism explanation, quantitative approach and application [J ] . Sustainable Energy & Fuels , 2020 , 4 ( 12 ): 5970 - 5986 .
ZHANG Z , CANO Z P , LUO D , et al . Rational design of tailored porous carbon-based materials for CO 2 capture [J ] . Journal of Materials Chemistry A , 2019 , 7 ( 37 ): 20985 - 21003 .
LI L , QUINLIVAN P A , KNAPPE D R U . Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution [J ] . Carbon , 2002 , 40 ( 12 ): 2085 - 2100 .
SHARIFIAN R , WAGTERVELD R M , DIGDAYA I A , et al . Electrochemical carbon dioxide capture to close the carbon cycle [J ] . Energy & Environmental Science , 2021 , 14 ( 2 ): 781 - 814 .
LOZANO D , CAZORLA D , LINARES A , et al . Activated carbon monoliths for methane storage: Influence of binder [J ] . Carbon , 2002 , 40 ( 15 ): 2817 - 2825 .
QASEM N A , QADIR N U , BEN-MANSOUR R , et al . Synthesis, characterization, and CO 2 breakthrough adsorption of a novel MWCNT/MIL-101(Cr) composite [J ] . Journal of CO 2 Utilization , 2017 , 22 : 238 - 249 .
王芳 , 安晓圣 , 穆金池 , 等 . 低压下碳纳米管用于水合物法捕集烟道气中CO 2 动力学机制研究 [J ] . 低碳化学与化工 , 2025 , 50 ( 2 ): 148 - 156 .
WANG F , AN X S , MU J C , et al . Kinetic mechanism of carbon nanotubes for CO 2 capture in flue gas by hydrate method under low pressures [J ] . Low-Carbon Chemistry and Chemical Engineering , 2025 , 50 ( 2 ): 148 - 156 .
HE M S , ZHANG S C , ZHANG J . Horizontal single-walled carbon nanotube arrays: Controlled synthesis, characterizations, and applications [J ] . Chemical Reviews , 2020 , 120 ( 22 ): 12592 - 12684 .
KELLER L , OHS B , LENHART J , et al . High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO 2 capture [J ] . Carbon , 2018 , 126 : 338 - 345 .
LIU Q , SHI Y , ZHENG S D , et al . Amine-functionalized low-cost industrial grade multi-walled carbon nanotubes for the capture of carbon dioxide [J ] . Journal of Energy Chemistry , 2014 , 23 ( 1 ): 111 - 118 .
IRANI M , JACOBSON A T , GASEM K A M , et al . Modified carbon nanotubes/tetrae-hylenepentamine for CO 2 capture [J ] . Fuel , 2017 , 206 : 10 - 18 .
DENG M , PARK H G . Spacer-assisted amine-coiled carbon nanotubes for CO 2 capture [J ] . Langmuir , 2019 , 35 ( 13 ): 4453 - 4459 .
李俊 , 马丹丹 , 邹雅珺 , 等 . 石墨相氮化碳的改性及其在光催化中的应用进展 [J ] . 中国材料进展 , 2024 , 43 ( 7 ): 565 - 578+626 .
LI J , MA D D , ZOU Y J , et al . The modification of graphite carbon nitride and its applications in photocatalysis [J ] . Progress of Materials in China , 2024 , 43 ( 7 ): 565 - 578+626 .
TALAPANENI S N , SINGH G , KIM I Y , et al . Nanostructured carbon nitrides for CO 2 capture and conversion [J ] . Advanced Materials , 2020 , 32 ( 18 ): 1904635 .
PENG H L , ZHONG F Y , ZHANG J B , et al . Graphitic carbon nitride functionalized with polyethylenimine for highly effective capture of carbon dioxide [J ] . Industrial & Engineering Chemistry Research , 2018 , 57 ( 32 ): 11031 - 11038 .
PARK D H , LAKHI K S , RAMADASS K , et al . Energy efficient synthesis of ordered mesoporous carbon nitrides with a high nitrogen content and enhanced CO 2 capture capacity [J ] . Chemistry—A European Journal , 2017 , 23 ( 45 ): 10753 - 10757 .
SREEDHAR I , UPADHYAY U , ROY P , et al . Carbon capture and utilization by graphenes-path covered and ahead [J ] . Journal of Cleaner Production , 2021 , 284 : 124712 .
RAMAR V , BALASUBRAMANIAN K . Reduced graphene oxide/WO 3 nanorod composites for photocatalytic degradation of methylene blue under sunlight irradiation [J ] . ACS Applied Nano Materials , 2021 , 4 ( 5 ): 5512 - 5521 .
SUVARNAPHAET P , PECHPRASARN S . Graphene-based materials for biosensors: A review [J ] . Sensors , 2017 , 17 ( 10 ): 2161 .
MISHRA A K , RAMAPRABHU S . Nanostructured polyaniline decorated graphene sheets for reversible CO 2 capture [J ] . Journal of Materials Chemistry , 2012 , 22 ( 9 ): 3708 - 3712 .
MENG L Y , PARK S J . Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates [J ] . Journal of Colloid and Interface Science , 2012 , 386 ( 1 ): 285 - 290 .
ZHANG L L , ZHAO X , STOLLER M D , et al . Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors [J ] . Nano Letters , 2012 , 12 ( 4 ): 1806 - 1812 .
HONG S M , KIM S H , JEONG B G , et al . Development of porous carbon nanofibers from electrospun polyvinylidene fluoride for CO 2 capture [J ] . RSC Advances , 2014 , 4 ( 103 ): 58956 - 58963 .
LI Y , ZOU B , HU C W , et al . Nitrogen-doped porous carbon nanofiber webs for efficient CO 2 capture and conversion [J ] . Carbon , 2016 , 99 : 79 - 89 .
IQBAL N , WANG X , YU J , et al . Robust and flexible carbon nanofibers doped with amine functionalized carbon nanotubes for efficient CO 2 capture [J ] . Advanced Sustainable Systems , 2017 , 1 ( 3/4 ): 1600028 .
FENG D D , ZHAO Y J , ZHANG Y , et al . Effects of H 2 O and CO 2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar [J ] . International Journal of Hydrogen Energy , 2017 , 42 ( 18 ): 13070 - 13084 .
CUI S B , ZHAO Y , LIU Y X , et al . Preparation of straw porous biochars by microwave-assisted KOH activation for removal of gaseous H 2 S [J ] . Energy & Fuels , 2021 , 35 ( 22 ): 18592 - 18603 .
SHARMA A , JINDAL J , MITTAL A , et al . Carbon materials as CO 2 adsorbents: A review [J ] . Environmental Chemistry Letters , 2021 , 19 ( 2 ): 875 - 910 .
袁帅 , 赵立欣 , 孟海波 , 等 . 生物炭主要类型, 理化性质及其研究展望 [J ] . 植物营养与肥料学报 , 2016 , 22 ( 5 ): 1402 - 1417 .
YUAN S , ZHAO L X , MENG H B , et al . The main types of biochar and their properties and expectative researches [J ] . Journal of Plant Nutrition and Fertilizer , 2016 , 22 ( 5 ): 1402 - 1417 .
WEDLER C , SPAN R . Micropore analysis of biomass chars by CO 2 adsorption: Comparison of different analysis methods [J ] . Energy & Fuels , 2021 , 35 ( 10 ): 8799 - 8806 .
ZENG Z W , TAN X F , LIU Y G , et al . Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures [J ] . Frontiers in Chemistry , 2018 , 6 : 80 .
JIA Y H , SHI S L , LIU J , et al . Study of the effect of pyrolysis temperature on the Cd 2+ adsorption characteristics of biochar [J ] . Applied Sciences , 2018 , 8 ( 7 ): 1019 .
SEWU D D , WOO S H , LEE D S , et al . Biochar from the co-pyrolysis of Saccharina japonica and goethite as an adsorbent for basic blue 41 removal from aqueous solution [J ] . Science of the Total Environment , 2021 , 797 : 149160 .
LIANG W W , LIU Z W , PENG J J , et al . Enhanced CO 2 adsorption and CO 2 /N 2 /CH 4 selectivity of novel carbon composites CPDA@A-Cs [J ] . Energy & Fuels , 2018 , 33 ( 1 ): 493 - 502 .
王媛 , 高峰 , 李存梅 , 等 . 苛性碱二次活化法制备中孔活性炭 [J ] . 太原理工大学学报 , 2014 , 45 ( 2 ): 215 - 219 .
WANG Y , GAO F , LI C M , et al . Preparation of mesoporous activated carbon by caustic alkali reactivation and its CO 2 adsorption property [J ] . Journal of Taiyuan University of Technology , 2014 , 45 ( 2 ): 215 - 219 .
ZGRZEBNICKI M , MICHAL C E , WROBEL R J . Improving the carbon dioxide uptake efficiency of activated carbons using a secondary activation with potassium hydroxide [J ] . Polish Journal of Chemical Technology , 2018 , 20 ( 3 ): 87 - 94 .
魏建文 , 林志峰 , 何泽瑜 , 等 . 蔗渣活性炭二次活化制备及其吸附CO 2 性能研究 [J ] . 无机材料学报 , 2017 , 32 ( 1 ): 18 - 24 .
WEI J W , LIN Z F , HE Z Y , et al . Bagasse activated carbon reactivation promotes adsorption of CO 2 [J ] . Journal of Inorganic Materials , 2017 , 32 ( 1 ): 18 - 24 .
ZHANG Y , WANG S Z , FENG D D , et al . Functional biochar synergistic solid/liqu id-phase CO 2 capture: A review [J ] . Energy & Fuels , 2022 , 36 ( 6 ): 2945 - 2970 .
WU R P , YE Q , WU K , et al . Highly efficient CO 2 adsorption of corn kernel-derived porous carbon with abundant oxygen functional groups [J ] . Journal of CO 2 Utilization , 2021 , 51 : 101620 .
OGINNI O , SINGH K , OPORTO G , et al . Effect of one-step and two-step H 3 PO 4 activation on activated carbon characteristics [J ] . Bioresource Technology Reports , 2019 , 8 : 100307 .
SHAO J A , ZHANG J J , ZHANG X , et al . Enhance SO 2 adsorption performance of biochar modified by CO 2 activation and amine impregnation [J ] . Fuel , 2018 , 224 : 138 - 146 .
DENG J Q , LI X D , WEI X , et al . Different adsorption behaviors and mechanisms of a novel amino-functionalized hydrothermal biochar for hexavalent chromium and pentavalent antimony [J ] . Bioresource Technology , 2020 , 310 : 123438 .
代祥 , 罗婴棋 , 张文俊 , 等 . 氮掺杂生物炭去除水中六价铬的效果及机理 [J ] . 环境科学学报 , 2023 , 43 ( 11 ): 84 - 93 .
DAI X , LUO Y Q , ZHANG W J , et al . Removal of hexavalent chromium from water using nitrogen-doped biochar:Performance and mechanism [J ] . Journal of Environmental Science , 2023 , 43 ( 11 ): 84 - 93 .
INAGAKI M , TOYODA M , SONEDA Y , et al . Nitrogen-doped carbon materials [J ] . Carbon , 2018 , 132 : 104 - 140 .
GORGULHO H F , GONÇALVES F , PEREIRA M F R , et al . Synthesis and characterization of nitrogen-doped carbon xerogels [J ] . Carbon , 2009 , 47 ( 8 ): 2032 - 2039 .
YU J Y , GUO M Y , MUHAMMAD F , et al . One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol-urea-formaldehyde resi n for CO 2 capture [J ] . Carbon , 2014 , 69 : 502 - 514 .
HE S , CHEN G Y , XIAO H , et al . Facile preparation of N-doped activated carbon produced from rice husk for CO 2 capture [J ] . Journal of Colloid and Interface Science , 2021 , 582 : 90 - 101 .
YANG Z X , ZHANG G J , XU Y , et al . One step N-doping and activation of biomass carbon at low temperature through NaNH 2 : An effective approach to CO 2 adsorbents [J ] . Journal of CO 2 Utilization , 2019 , 33 : 320 - 329 .
KHANDAKER T , HOSSAIN M S , DHAR P K , et al . Efficacies of carbon-based adsorbents for carbon dioxide capture [J ] . Processes , 2020 , 8 ( 6 ): 654 .
SUN H , LI Y J , BIAN Z G , et al . Thermochemical energy storage performances of Ca-based natural and waste materials under high pressure during CaO/CaCO 3 cycles [J ] . Energy Conversion and Management , 2019 , 197 : 111885 .
MA X T , LI Y J , YAN X Y , et al . Preparation of a morph-genetic CaO-based sorbent using paper fiber as a biotemplate for enhanced CO 2 capture [J ] . Chemical Engineering Journal , 2019 , 361 : 235 - 244 .
GUO F Q , JIANG X C , LI X L , et al . Synthesis of MgO/Fe 3 O 4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green [J ] . Materials Chemistry and Physics , 2020 , 240 : 122240 .
HE S , CHEN G Y , XIAO H , et al . Facile preparation of N-doped activated carbon produced from rice husk for CO 2 capture [J ] . Journal of Colloid and Interface Science , 2021 , 582 : 90 - 101 .
REHMAN A , PARK S J . Tunable nitrogen-doped microporous carbons: Delineating the role of optimum pore size for enhanced CO 2 adsorption [J ] . Chemical Engineering Journal , 2019 , 362 : 731 - 742 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution
蜀公网安备51012202001533