浏览全部资源
扫码关注微信
东南大学 能源与环境学院 能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
Received:02 September 2024,
Revised:20 September 2024,
Published:25 May 2025
移动端阅览
周宇,毛晓瑛,张博雅等.Zn、Zr电子间相互作用对ZnZr催化剂CO2加氢制甲醇性能的影响[J].低碳化学与化工,2025,50(05):120-131.
ZHOU Yu,MAO Xiaoying,ZHANG Boya,et al.Influence of electron interaction between Zn and Zr on performance of ZnZr catalysts for CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):120-131.
周宇,毛晓瑛,张博雅等.Zn、Zr电子间相互作用对ZnZr催化剂CO2加氢制甲醇性能的影响[J].低碳化学与化工,2025,50(05):120-131. DOI: 10.12434/j.issn.2097-2547.20240365.
ZHOU Yu,MAO Xiaoying,ZHANG Boya,et al.Influence of electron interaction between Zn and Zr on performance of ZnZr catalysts for CO2 hydrogenation to methanol[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):120-131. DOI: 10.12434/j.issn.2097-2547.20240365.
将CO
2
进行化学转化利用有助于CO
2
减排,从而减缓温室效应,且CO
2
加氢制甲醇可在一定程度上弥补未来能源缺口。目前,开发高性能的催化剂成为CO
2
加氢制甲醇技术发展的关键。以ZnZr催化剂为研究对象,采用浸渍法合成了不同
n
(Zn)/
n
(Zr)的
x
Zn-ZrO
2
和不同
n
(Zr)/
n
(Zn)的
y
Zr-ZnO催化剂,并采用XRD、N
2
吸/脱附、XPS、H
2
-TPR和in situ DRIFTS等手段对催化剂进行了表征。结果表明,在
x
Zn-ZrO
2
催化剂中,0.50 Zn-ZrO
2
(
n
(Zn)/
n
(Zr) = 0.50)的甲醇时空产率最高,在320 ℃、5 MPa下达141 mg/(g·h)。在相同测试条件下,在
y
Zr-ZnO催化剂中,0.20 Zr-ZnO(
n
(Zr)/
n
(Zn) = 0.20)的甲醇时空产率最高(165 mg/(g·h) )。
x
Zn-ZrO
2
催化剂中,Zn与Zr之间存在电子相互作用,导致富电子Zn位点和缺电子Zr位点形成,更多的电子从Zr转移到Zn,有利于提高甲醇选择性和时空产率。
y
Zr-ZnO催化剂中,表面吸附氧成为影响CO
2
转化率的关键因素。此外,HCOO*中间物种扮演着关键角色,在
x
Zn-ZrO
2
和
y
Zr-ZnO催化剂催化下的CO
2
加氢制甲醇中,HCOO*物种越多,越有利于甲醇合成。
CO
2
chemical conversion is beneficial for CO
2
em
ission reduction to reduce the greenhouse effect
and CO
2
hydrogenation to methanol can make up for the future energy gap to a certain extent. At present
the development of high-performance catalysts has become a key target for the development of CO
2
hydrogenation to methanol technology.
x
Zn-ZrO
2
with different
n
(Zn)/
n
(Zr) and
y
Zr-ZnO with different
n
(Zr)/
n
(Zn) catalysts were synthesized by impregnation method
using ZnZr catalyst as the research object
and the catalysts were characterized by XRD
N
2
adsorption/desorption
XPS
H
2
-TPR
insitu DRIFTS and so on. The results show that 0.50 Zn-ZrO
2
catalyst (
n
(Zn)/
n
(Zr) = 0.50) among
x
Zn-ZrO
2
catalysts
has the highest methanol space time yield with 141 mg/(g·h) at 320 ℃ and 5 MPa. 0.20 Zr-ZnO (
n
(Zr)/
n
(Zn) = 0.20) among
y
Zr-ZnO catalysts has highest methanol space time yield with 165 mg/(g·h) under the same test conditions. In
x
Zn-ZrO
2
catalysts
there are electron interactions between Zn and Zr
resulting in the formation of electron-rich Zn sites and electron-deficient Zr sites
and more electrons are transferred from Zr to Zn
which is beneficial for improving methanol selectivity and space time yield. In
y
Zr-ZnO catalysts
surface adsorbed oxygen becomes a key factor affecting CO
2
conversion rate. In addition
the HCOO* intermediate species play a key role. It is confirmed that in the CO
2
hydrogenation to methanol catalyzed by
x
Zn-ZrO
2
and
y
Zr-ZnO catalysts
the more HCOO* species there are
the more favorable it is for methanol synthesis.
BAENA-MORENO F M , RODRIGUEZ-GALAN M , VEGA F , et al . Carbon capture and utilization technologies: A literature review and recent advances [J ] . Energy Sources , Part A: Recovery Utilization and Environmental Effects, 2019 , 41 ( 12 ): 1403 - 1433 .
GAO W L , LIANG S Y , WANG R J , et al . Industrial carbon dioxide capture and utilization: State of the art and future challenges [J ] . Chemical Society Reviews , 2020 , 49 ( 23 ): 8584 - 8686 .
孙国超 , 祁建伟 , 袁圣娟 . 我国碳捕集利用与封存技术现状及中国石化集团南京工程有限公司“双碳”相关技术研发进展 [J ] . 磷肥与复肥 , 2021 , 36 ( 10 ): 6 - 10 .
SUN G C , QI J W , YUAN S J . Current situation of carbon capture, utilization and storage technology in China and research and development progress of “double carbon” related technology of Sinopec Nanjing Engineering Co., Ltd . [J ] . Phosphate & Compound Fertilizer , 2021 , 36 ( 10 ): 6 - 10 .
OLAH G A , GOEPPERT A , PRAKASH G K S . Chemical recycling off carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons [J ] . Journal of Organic Chemistry , 2009 , 74 ( 2 ): 487 - 498 .
BARBATO L , CENTI G , IAQUANIELLO G , et al . Trading renewable energy by using CO 2 : An effective option to mitigate climate change and increase the use of renewable energy sources [J ] . Energy Technology , 2014 , 2 ( 5 ): 453 - 461 .
DORNER R W , HARDY D R , WILLIAMS F W , et al . Influence of gas feed composition and pressure on the catalytic conversion of CO 2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst [J ] . Energy & Fuels , 2009 , 23 ( 8 ): 4190 - 4195 .
KWAK J H , KOVARIK L , SZANYI J . Heterogeneous catalysis on atomically dispersed supported metals: CO 2 reduction on multifunctional Pd catalysts [J ] . ACS Catalysis , 2013 , 3 ( 9 ): 2094 - 2100 .
WANG W H , HULL J F , MUCKERMAN J T , et al . Second-coordination-sphere and electronic effects enhance iridium(III)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure [J ] . Energy & Environmental Science , 2012 , 5 ( 7 ): 7923 - 7926 .
GRACIANI J , GRINTER D C , RAMIREZ P , et al . Conversion of CO 2 to methanol and ethanol on Pt/CeO x /TiO 2 (110): Enabling role of water in C—C bond formation [J ] . ACS Catalysis , 2022 , 24 ( 12 ): 15097 - 15109 .
杨军 , 梁丽烨 , 李华 , 等 . 稀土元素改性CO 2 加氢制甲醇催化剂的研究进展 [J ] . 低碳化学与化工 , 2024 , 49 ( 11 ): 1 - 11 .
YANG J , LIANG L Y , LI H , et al . Research progress on catalysts modified by rare earth elements for CO 2 hydrogenation to methanol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 11 ): 1 - 11 .
张兰 , 陈标华 , 王宁 . CuZn/CeO 2 催化剂在CO 2 加氢制甲醇中的应用研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 8 ): 100 - 106 .
ZHANG L , CHEN B H , WANG N . Study on application of CuZn/CeO 2 catalysts in CO 2 hydrogenation to methanol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 8 ): 100 - 106 .
SHEN C Y , BAO Q Q , XUE W J , et al . Synergistic effect of t he metal-support interaction and interfacial oxygen vacancy for CO 2 hydrogenation to methanol over Ni/In 2 O 3 catalyst: A theoretical study [J ] . Journal of Energy Chemistry , 2022 , 65 : 623 - 629 .
WANG J J , LI G N , LI Z L , et al . A highly selective and stable ZnO-ZrO 2 solid solution catalyst for CO 2 hydrogenation to methanol [J ] . Science Advances , 2017 , 3 ( 10 ): e1701290 .
SHARMA P , HO P H , SHAO J L , et al . Role of ZrO 2 and CeO 2 support on the In 2 O 3 catalyst activity for CO 2 hydrogenation [J ] . Fuel , 2023 , 331 ( 2 ): 125878 .
WANG J Y , ZHNAG G H , ZHU J , et al . CO 2 hydrogenation to methanol over In 2 O 3 -based catalysts: From mechanism to catalyst development [J ] . ACS Catalysis , 2021 , 11 ( 3 ): 1406 - 1423 .
AY S , OZDEMIR M , MELIKOGIU M . Effects of metal promotion on the performance, catalytic activity, selectivity and deactivation rates of Cu/ZnO/Al 2 O 3 catalysts for methanol synthesis [J ] . Chemical Engineering Research & Design , 2021 , 175 : 146 - 160 .
NATESAKHAWAT S , LEKSE J W , BALTRUS J P , et al . Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol [J ] . ACS Catalysis , 2012 , 2 ( 8 ): 1667 - 1676 .
YE H C , NA W , GAO W G , et al . Carbon-modified CuO/ZnO catalyst with high oxygen vacancy for CO 2 hydrogenation to methanol [J ] . Energy Technology , 2020 , 8 ( 6 ): 2000194 .
GUO Y L , GUO X W , SONG C S , et al . Capsule-structured copper-zinc catalyst for highly efficient hydrogenation of carbon dioxide to methanol [J ] . ChemSusChem , 2019 , 12 ( 22 ): 4916 - 4926 .
FAN L , FUJIMOTO K . Development of active and stable supported noble-metal catalysts for hydrogenation of carbon-dioxide to methanol [J ] . Fuel and Energy Abstracts , 1996 , 37 ( 3 ): 185 .
TAWALBEH M , JAVED R M N , Al-OTHMAN A , et al . The novel contribution of non-noble metal catalysts for intensified carbon dioxide hydrogenation: Recent challenges and opportunities [J ] . Energy Conversion and Management , 2023 , 279 : 116755 .
LIU J L , XUE W J , ZHANG W W , et al . Theoretical study on the catalytic CO 2 hydrogenation over the MOF-808-encapsulated single-atom metal catalysts [J ] . Journal of Physical Chemistry C , 2023 , 8 ( 127 ): 4051 - 4062 .
TANG Q L , SHEN Z M , HUANG L , et al . Synthesis of methanol from CO 2 hydrogenation promoted by dissociative adsorption of hydrogen on a Ga 3 Ni 5 (221) surface [J ] . Physical Chemistry Chemical Physics , 2017 , 19 ( 28 ): 18539 - 18555 .
LIU L N , YAO H D , JIANG Z , et al . Theoretical study of methanol synthesis from CO 2 hydrogenation on PdCu 3 (111) surface [J ] . Applied Surface Science , 2018 , 451 : 333 - 345 .
KANEGA R , ONISHI N , TANAKA S , et al . Catalytic hydrogenation of CO 2 to methanol using multinuclear iridium complexes in a gas-solid phase reaction [J ] . Journal of the American Chemical Society , 2021 , 143 ( 3 ): 1570 - 1576 .
FURUKAWA S , KOMATSU T . Intermetallic compounds: Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis [J ] . ACS Catalysis , 2017 , 7 ( 1 ): 735 - 765 .
WANG X Y , YAO Z Y , GUO X H , et al . Modulating electronic interaction over Zr-ZnO catalysts to enhance CO 2 hydrogenation to methanol [J ] . ACS Catalysis , 2023 , 14 ( 1 ): 508 - 521 .
HAN Z , TANG C Z , SHA F , et al . CO 2 hydrogenation to methanol on ZnO-ZrO 2 solid solution catalysts with ordered mesoporous structure [J ] . Journal of Catalysis , 2021 , 396 : 242 - 250 .
SHA F , TANG S , TANG C Z , et al . The role of surface hydroxyls on ZnZrO x solid solution catalyst in CO 2 hydrogenation to methanol [J ] . Chinese Journal of Catalysis , 2023 , 45 : 162 - 173 .
TADA S , OCHIAI N , KINOSHITA H , et al . Active sites on Zn x Zr 1- x O 2- x solid solution catalysts for CO 2 -to-methanol hydrogenation [J ] . ACS Catalysis , 2022 , 12 ( 13 ): 7748 - 7759 .
SHA F , TANG C Z , TANG S , et al . The promoting role of Ga in ZnZrO x solid solution catalyst for CO 2 hydrogenation to methanol [J ] . Journal of Catalysis , 2021 , 404 : 383 - 392 .
霍凯旋 , 王阳 , 吴明铂 . CO 2 加氢制甲醇用Cu基催化剂研究进展 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 22 - 31 .
HUO K X , WANG Y , WU M P . Progress on Cu-based catalysts for CO 2 hydrogenation to methanol [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 22 - 31 .
JIANG P F , DU G Y , SHI Y S , et al . Ultrafast sintering of Na 3 Zr 2 Si 2 PO 12 solid electrolyte for long lifespan solid-state sodium ion batteries [J ] . Chemical Engineering Journal , 2023 , 451 ( 3 ): 138771 .
JIN S E , JIN H E . Multiscale metal oxide particles to enhance photocatalytic antimicrobial activity against escherichia coli and M13 bacteriophage under dual ultraviolet irradiation [J ] . Pharmaceutics , 2021 , 13 ( 2 ): 222 .
CHEN L L , MASHIMO T , ONURZAK E , et al . Pure tetragonal ZrO 2 nanoparticles synthesized by pulsed plasma in liquid [J ] . Journal of Physical Chemistry C , 2011 , 115 ( 19 ): 9370 - 9375 .
MARCOS F C F , ASSAF J M , GIUDICI R , et al . Surface interaction of CO 2 /H 2 mixture on mesoporous ZrO 2 : Effect of crystalline polymorph phases [J ] . Applied Surface Science , 2019 , 496 : 143671 .
FAN X , JIN B T , HE X Q , et al . Ultra-thin ZrO 2 overcoating on CuO-ZnO-Al 2 O 3 catalyst by atomic layer deposition for improved catalytic performance of CO 2 hydrogenation to dimethyl ether [J ] . Nanotechnology , 2023 , 34 ( 23 ): 235401 .
MAO X Y , ZHANG Y P , XU Y , et al . The lattice oxygen determines the methanol selectivity in CO 2 hydrogenation over ZnZrO x catalysts [J ] . Catalysis Science & Technology , 2024 , 14 ( 2 ): 419 - 430 .
HE T H , DING D N , ZHOU Y , et al . Site-selective nitrogen-doped α ‑MnO 2 for catalytic oxidation of carcinogenic HCHO in indoor air [J ] . ACS ES & T Engineering , 2022 , 2 ( 8 ): 1403 - 1413 .
LI D D , XU F , TANG X , et al . Induced activation of the commercial Cu/ZnO/Al 2 O 3 catalyst for the steam reforming of methanol [J ] . Nature Catalysis , 2022 , 5 ( 2 ): 99 - 108 .
NAGASE H , NAITO R , TADA S , et al . Ru nanoparticles supported on amorphous ZrO 2 for CO 2 methanation [J ] . Catalysis Science & Technology , 2020 , 10 ( 14 ): 4522 - 4531 .
李子顺 . 金属氧化物负载型碳气凝胶深度脱除天然气中H 2 S和COS [D ] . 青岛 : 青岛理工大学 , 2023 .
LI Z S . Deep removal of H 2 S and COS from natural gas by metal oxide supported carbon aerogel [D ] . Qingdao : Qingdao University of Technology , 2023 .
CHEN H , CUI H S , LV Y , et al . CO 2 hydrogenation to methanol over Cu/ZnO/ZrO 2 catalysts: Effects of ZnO morphology and oxygen vacancy [J ] . Fuel , 2022 , 314 : 123035 .
WU C Y , LIN L L , LIU J J , et al . Inverse ZrO 2 /Cu as a highly efficient methanol synthesis catalyst from CO 2 hydrogenation [J ] . Nature Communications , 2020 , 11 ( 1 ): 5767 .
ALVES L M N C , AIMEIDA M P , AYALA M , et al . CO 2 methanation over metal catalysts supported on ZrO 2 : Effect of the nature of the metallic phase on catalytic performance [J ] . Chemical Engineering Science , 2021 , 239 : 116604 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution