
浏览全部资源
扫码关注微信
1.太原工业学院 化学与化工系,山西 太原 030008
2.太原工业学院 环境与安全工程系, 山西 太原 030008
Published:25 December 2024,
Received:24 July 2024,
Revised:04 September 2024,
移动端阅览
杨苗,李攀,杨红等.Ru-FeOOH@NiFe LDH纳米片制备及其电解水析氢性能研究[J].低碳化学与化工,2024,49(12):121-126.
YANG Miao,LI Pan,YANG Hong,et al.Study on preparation and properties of Ru-FeOOH@NiFe LDH nanosheets for electrocatalytic hydrogen evolution[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):121-126.
杨苗,李攀,杨红等.Ru-FeOOH@NiFe LDH纳米片制备及其电解水析氢性能研究[J].低碳化学与化工,2024,49(12):121-126. DOI: 10.12434/j.issn.2097-2547.20240311.
YANG Miao,LI Pan,YANG Hong,et al.Study on preparation and properties of Ru-FeOOH@NiFe LDH nanosheets for electrocatalytic hydrogen evolution[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):121-126. DOI: 10.12434/j.issn.2097-2547.20240311.
电解水制氢技术的开发对于促进低碳发展具有重要意义,设计高效稳定的催化剂至关重要。通过一步水热法在泡沫镍基底上合成了Ru-FeOOH@NiFe LDH催化剂,用于电催化水分解制氢。通过SEM、TEM、XRD和XPS对催化剂进行了表征分析。结果表明,钌的引入可以调节催化剂的电子结构,增强金属-载体相互作用,使得Ru-FeOOH@NiFe L
DH表现出良好的电催化性能。当电流密度为10 mA/cm
2
时,Ru-FeOOH@NiFe LDH所需过电位为95 mV,Tafel斜率为80.6 mV/dec,其电催化性能明显优于FeOOH@NiFe LDH。在相同反应条件下,Ru-FeOOH@NiFe LDH可稳定运行15 h。
The development of hydrogen production technology by electrolytic water is important to promote the low-carbon development
among which the design of efficient and stable catalysts is essential. Ru-FeOOH@NiFe LDH catalyst was synthesized on nickel foam substrate by one-step hydrothermal method and characterized by SEM
TEM
XRD and XPS. The results show that the introduction of Ru can adjust the electronic structure of the catalyst
improve the interaction between metal and supports
and the catalyst shows better electrocatalytic performance. The required overpotential of Ru-FeOOH@NiFe LDH is 95 mV at the current density of 10 mA/cm
2
with a low Tafel slope of 80.6 mV/dec
which indicates that the electrocatalytic performance of Ru-FeOOH@NiFe LDH is better than that of FeOOH@NiFe LDH. Ru-FeOOH@NiFe LDH can catalyze the reaction stably for 15 h under the same reaction conditions.
电解水析氢反应电催化剂NiFe层状双金属氢氧化物
water electrolysishydrogen evolution reactionelectrocatalystNiFe layered double hydroxide
SMALLEY R E. Future global energy prosperity: The terawatt challenge [J]. MRS Bulletin, 2005, 30(6): 412-417.
CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294-303.
DRESSELHAUS M S, THOMAS I L. Alternative energy technologies [J]. Nature, 2001, 414: 332-337.
XIAO X, LI Z, XIONG Y, et al. IrMo nanocluster-doped porous carbon electrocatalysts derived from cucurbit[6]uril boost efficient alkaline hydrogen evolution [J]. Journal of the American Chemical Society, 2023, 145(30): 16548-16556.
王宇超, 徐京辉, 尹永利, 等. 工业碱性水电解制氢用析氧催化材料研究进展[J]. 天然气化工—C1化学与化工, 2022, 47(4): 157-165.
WANG Y C, XU J H, YIN Y L, et al. Research progress of catalytic materials for oxygen evolution reaction in industrial hydrogen production by alkaline water electrolysis [J]. Natural Gas Chemical Industry, 2022, 47(4): 157-165.
TURNER J A. Sustainable hydrogen production [J]. Science, 2004, 305(5686): 972-974.
LI C Q, KIM S H, LIM H Y, et al. Self-accommodation induced electronic metal-support interaction on ruthenium site for alkaline hydrogen evolution reaction [J]. Advanced Materials, 2023, 35(21): 2301369.
WANG J, GAO Y, KONG H, et al. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances [J]. Chemical Society Reviews, 2020, 49(24): 9154-9196.
张奇, 郑东前, 刘馨璐, 等. 大电流密度下高性能析氢电催化剂研究进展[J]. 低碳化学与化工, 2024, 49(5): 96-104.
ZHANG Q, ZHENG D Q, LIU X L, et al. Research progress on high-performance hydrogen evolution reaction electrocatalysts under high current density [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(5): 96-104.
HU C L, ZHANG L, GONG J L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting [J]. Energy & Environmental Science, 2019, 12(9): 2620-2645.
KWEON D H, OKYAY M S, KIM S J, et al. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency [J]. Nature Communications, 2020, 11: 1278.
MAHMOOD J, LI F, JUNG S M, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction [J]. Nature Nanotechnology, 2017, 12: 441-446.
ZHANG J, ZHANG Q Y, FENG X L. Support and interface effects in water-splitting electrocatalysts [J]. Advanced Materials, 2019, 31(31): 1808167.
BAE S Y, MAHMOOD J, JEON I Y, et al. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction [J]. Nanoscale Horizons, 2020, 5(1): 43-56.
DAI L M, XUE Y H, QU L T, et al. Metal-free catalysts for oxygen reduction reaction [J]. Chemical Reviews, 2015, 115(11): 4823-4892.
YANG M, JIANG Y M, QU M J, et al. Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production [J]. Applied Catalysis B: Environmental, 2020, 269: 118803.
NONG S Y, DONG W J, YIN J W, et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2018, 140(17): 5719-5727.
BRUIX A, RODRIGUEZ J A, RAMIREZ P J, et al. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts [J]. Journal of the American Chemical Society, 2012, 134(21): 8968-8974.
SHI Y, MA Z R, XIAO Y Y, et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction [J]. Nature Communications, 2021, 12: 3021.
ZHANG Y C, ZHAO M H, WU J T, et al. Construction of Pt single-atom and cluster/FeOOH synergistic active sites for efficient electrocatalytic hydrogen evolution reaction [J]. ACS Catalysis, 2024, 14(10): 7867-7876.
MCCRORY C C, JUNG S, FERRER I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices [J]. Journal of the American Chemical Society, 2015, 137(13): 4347-4357.
NIU S, JIANG W J, WEI Z X, et al. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation [J]. Journal of the American Chemical Society, 2019, 141(17): 7005-7013.
HU C J, HU Y F, FAN C H, et al. Surface-enhanced Raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation [J]. Angewandte Chemie International Edition, 2021, 60(36): 19774-19778.
ZHAI P L, XIA M Y, WU Y Z, et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting [J]. Nature Communications, 2021, 12: 4587.
DIONIGI F, ZENG Z H, SINEV I, et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution [J]. Nature Communications, 2020, 11: 2522.
QU M J, JIANG Y M, YANG M, et al. Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting [J]. Applied Catalysis B: Environmental, 2020, 263: 118324.
RAY C, LEE S C, JIN B J, et al. Stacked porous iron-doped nickel cobalt phosphide nanoparticle: An efficient and stable water splitting electrocatalyst [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6146-6156.
ASNAVANDI M, YIN Y C, LI Y B, et al. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe-OOH catalysts [J]. ACS Energy Letters, 2018, 3(7): 1515-1520.
CHEN Y Y, ZHANG Y, ZHANG X, et al. Self-templated fabrication of MoNi4/MoO3-x nanorod arrays with dual active components for highly efficient hydrogen evolution [J]. Advanced Materials, 2017, 29(39): 1703311.
ZHANG J F, LIU J Y, XI L F, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction [J]. Journal of the American Chemical Society, 2018, 140(11): 3876-3879.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution