浏览全部资源
扫码关注微信
郑州大学 化工学院,河南 郑州 450001
Received:15 July 2024,
Revised:11 September 2024,
Published:25 March 2025
移动端阅览
郭冰洋,杜春丽,范志辉等.Ni/Al2O3-CeO2催化剂上乙烷干重整反应本征动力学研究[J].低碳化学与化工,2025,50(03):39-46.
GUO Bingyang,DU Chunli,FAN Zhihui,et al.Study on intrinsic kinetics of ethane dry reforming reaction on Ni/Al2O3-CeO2 catalysts[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):39-46.
郭冰洋,杜春丽,范志辉等.Ni/Al2O3-CeO2催化剂上乙烷干重整反应本征动力学研究[J].低碳化学与化工,2025,50(03):39-46. DOI: 10.12434/j.issn.2097-2547.20240298.
GUO Bingyang,DU Chunli,FAN Zhihui,et al.Study on intrinsic kinetics of ethane dry reforming reaction on Ni/Al2O3-CeO2 catalysts[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):39-46. DOI: 10.12434/j.issn.2097-2547.20240298.
乙烷干重整反应是实现CO
2
利用的重要途径之一。Ni基催化剂因具有低成本和高催化活性等特点被广泛用于乙烷干重整反应。然而,乙烷干重整反应机理仍不明晰,这制约了高效Ni基催化剂的开发。采用溶胶凝胶法制备了Ni质量分数分别为5%和10%的Ni基催化剂(5%Ni/Al
2
O
3
-CeO
2
和10%Ni/Al
2
O
3
-CeO
2
),通过本征动力学方法分析了反应物分压(
<math id="M1"><msub><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">6</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366010&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365986&type=
5.92666674
和
<math id="M2"><msub><mrow><mi>p</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76365972&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366013&type=
5.16466665
)和产物分压(
<math id="M3"><msub><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366019&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366015&type=
3.97933316
和
p
CO
)对相关反应的影响,研究了反应温度、Ni团簇平均粒径对乙烷干重整反应过程中乙烷活化的影响。结果表明,在温度为823 K、常压、
<math id="M4"><msub><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">6</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366001&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366002&type=
5.92666674
为0.1~7.0 kPa、
<math id="M5"><msub><mrow><mi>p</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366023&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366049&type=
5.16466665
为2.0~20.0 kPa和空速为6.9 × 10
5
mL/(g·h)下,催化剂上乙烷正向转化速率与
<math id="M6"><msub><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">6</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366065&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366066&type=
5.92666674
线性相关,且不受
<math id="M7"><msub><mrow><mi>p</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366023&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366049&type=
5.16466665
、
<math id="M8"><msub><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366019&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366015&type=
3.97933316
和
p
CO
的影响;在本征动力学区间内,乙烷重整反应速率的速率控制步骤为乙烷活化,活化能为(108 ± 10) kJ/mol。在温度为823 K、常压和空速为6.9 × 10
5
mL/(g·h)下,Ni团簇平均粒径为6.5 nm的5%Ni/Al
2
O
3
-CeO
2
具有较高的乙烷活化速率((7.26 ± 0.80) mol/(mol·min·kPa))。
Ethane dry reforming is one of the important ways to realize CO
2
utilization. Ni-based catalysts are widely used in ethane dry reforming reactions due to their characteristics of low costs and high catalytic activities. However
the mechanism of ethane dry reforming is still unclear
which restricts the development of high-efficienct Ni-based catalysts. Using the sol-gel method
Ni-based catalysts with nickel mass fractions of 5% and 10% (5%Ni/Al
2
O
3
-CeO
2
and 10%Ni/Al
2
O
3
-CeO
2
)
respectively
were prepared. The effects of the reactants partial pressures (
<math id="M9"><msub><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">6</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366052&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366043&type=
6.01133299
and
<math id="M10"><msub><mrow><mi>p</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366044&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366054&type=
5.24933338
) and the products partial pressures (
<math id="M11"><msub><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366070&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366056&type=
3.97933316
and
p
CO
) on the related reactions were analyzed by intrinsic kinetic method. The influences of reaction
temperatures and Ni clusters average particle sizes on the activation of ethane during ethane dry reforming were studied. The results show that at temperature of 823 K
atmospheric pressure
<math id="M12"><msub><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">6</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366057&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366078&type=
6.01133299
of 0.1 kPa to 0.7 kPa
<math id="M13"><msub><mrow><mi>p</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366058&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366079&type=
5.24933338
of 2.0 kPa to 20.0 kPa and space velocity of 6.9 × 10
5
mL/(g·h)
the forward rate of ethane conversion increases linearly with
<math id="M14"><msub><mrow><mi>p</mi></mrow><mrow><msub><mrow><mi mathvariant="normal">C</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub><msub><mrow><mi mathvariant="normal">H</mi></mrow><mrow><mn mathvariant="normal">6</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366059&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366080&type=
6.01133299
while independent with
<math id="M15"><msub><mrow><mi>p</mi></mrow><mrow><mi mathvariant="normal">C</mi><msub><mrow><mi mathvariant="normal">O</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msub></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366058&type=
3.30200005
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=76366079&type=
5.24933338
p
H2
and
p
CO
over the catalysts. In the intrinsic kinetic interval
the rate-controlled step of the ethane dry reforming reaction rate is ethane activation
and the activation energy is (108 ± 10) kJ/mol. At temperature of 823 K
atmospheric pressure and space velocity of 6.9 × 10
5
mL/(g·h)
5%Ni/Al
2
O
3
-CeO
2
with Ni clusters average particle sizes of 6.5 nm exhibits relative high ethane activation rate
which is (7.26 ± 0.
80) mol/(mol·min·kPa).
潘继平 . 中国国产气勘探开发现状与中长期前景研究 [J ] . 国际石油经济 , 2024 , 32 ( 8 ): 1 - 14 .
PAN J P . Research on the current status and medium-to long-term prospects of domestic gas exploration and developnment in China [J ] . International Petroleum Economics , 2024 , 32 ( 8 ): 1 - 14 .
郭丹 , 方雨洁 , 许一寒 , 等 . 乙烷和二氧化碳催化转化的研究进展 [J ] . 化工学报 , 2022 , 73 ( 8 ): 3406 - 3416 .
GUO D , FANG Y J , XU Y H , et al . Research progress of the catalytic conversion of ethane and carbon dioxide [J ] . CIESC Journal , 2022 , 73 ( 8 ): 3406 - 3416 .
张涛 , 刘志成 , 杨为民 . 低碳烷烃与二氧化碳催化转化研究进展 [J ] . 中国科学: 化学 , 2021 , 51 ( 2 ): 154 - 164 .
ZHANG T , LIU Z C , YANG W M . Progress in the catalytic conversion of light alkanes with carbon dioxide [J ] . Scientia Sinica (Chimica) , 2021 , 51 ( 2 ): 154 - 164 .
SAVCHENKO V I , ZIMIN Y S , NIKITIN A V , et al . Utilization of CO 2 in non-catalytic dry reforming of C 1 -C 4 hydrocarbons [J ] . Journal of CO 2 Utilization , 2021 , 47 : 101490 .
XU X D , MOULIJN J A . Mitigation of CO 2 by chemical conversion: Plausible chemical reactions and promising products [J ] . Energy & Fuels , 1996 , 10 ( 2 ): 305 - 325 .
KATTELL S , CHEN J G , LIU P . Mechanistic study of dry reforming of ethane by CO 2 on a bimetallic PtNi(111) model surface [J ] . Catalysis Science & Technology , 2018 , 8 ( 15 ): 3748 - 3758 .
GUO H Y , HE H , MIAO C X , et al . Ethane conversion in the presence of CO 2 over Co-based ZSM-5 zeolite: Co species controlling the reaction pathway [J ] . Molecular Catalysis , 2022 , 519 : 112155 .
WANG Y , HU P , YANG J , et al . C—H bond activation in light alkanes: A theoretical perspective [J ] . Chemical Society Reviews , 2021 , 50 ( 7 ): 4299 - 4358
TSIOTSIAS A I , CHARISIOU N D , SEBASTIAN V , et al . A comparative study of Ni catalysts supported on Al 2 O 3 , MgO-CaO-Al 2 O 3 and La 2 O 3 -Al 2 O 3 for the dry reforming of ethane [J ] . International Journal of Hydrogen Energy , 2022 , 47 ( 8 ): 5337 - 5353 .
AL-MAMOORI A , ROWNAGHI A A , REZAEI F . Combined capture and utilization of CO 2 for syngas production over dual-function materials [J ] . ACS Sustainable Chemistry & Engineering , 2018 , 6 ( 10 ): 13551 - 13561 .
李梦双 , 彭鹏 , 田鑫 , 等 . LaFeO 3 氧载体在乙烷化学链干重整中的性能评估 [J ] . 燃烧科学与技术 , 2022 , 28 ( 1 ): 70 - 77 .
LI M S , PENG P , TIAN X , et al . Converting ethane to syngas via chemical looping dry reforming with LaFeO 3 perovskite oxygen carrier [J ] . Combustion Science and Technology , 2022 , 28 ( 1 ): 70 - 77 .
XIE Z H , TIAN D , XIE M , et al . Interfacial active sites for CO 2 assisted selective cleavage of C—C/C—H bonds in ethane [J ] . Chem , 2020 , 6 ( 10 ): 2703 - 2716 .
XIE Z H , YAN B , LEE J H , et al . Effects of oxide supports on the CO 2 reforming of ethane over Pt-Ni bimetallic catalysts [J ] . Applied Catalysis B: Environmental , 2019 , 245 : 376 - 388 .
XIE Z H , WANG X L , CHEN X B , et al . General descriptors for CO 2 -assisted selective C—H/C—C bond scission in ethane [J ] . Journal of the American Chemical Society , 2022 , 144 ( 9 ): 4186 - 4195 .
LI X Q , YANG Z Q , ZHANG L , et al . Effect of Pd doping in (Fe/Ni)/CeO 2 catalyst for the reaction path in CO 2 oxidative ethane dehydrogenation/reforming [J ] . Energy , 2021 , 234 : 121261 .
YANG Z Q , LAN Y Q , YAN Y F , et al . Activation pathway of C—H and C—C bonds of ethane by Pd atom with CO 2 as a soft oxidant [J ] . ChemistrySelect , 2019 , 4 ( 33 ): 9608 - 9617 .
AL-FATESH A , ACHARYA K , OSMANA I , et al . Kinetic study of zirconia-alumina-supported Ni-Fe catalyst for dry reforming of methane: Impact of partial pressure and reaction temperature [J ] . International Journal of Chemical Engineering , 2023 , 8667432 .
孙艳辉 , 何广平 , 马国正 , 等 . 物理化学实用手册 [M ] . 北京 : 化学工业出版社 , 2016 .
SUN Y H , HE G P , MA G Z , et al . Handbook of physical chemistry [M ] . Beijing : Chemical Industry Press , 2016 .
TU W F , GHOUSSOUB M , SINGH C V , et al . Consequences of surface oxophilicity of Ni, Ni-Co, and Co clusters on methane activation [J ] . Journal of the American Chemical Society , 2017 , 139 ( 20 ): 6928 - 6945 .
涂维峰 , 时彦玲 , 韩一帆 . 一种吸附测试方法和装置 : 201711103129.5 [P ] . 2021-12-24 .
TU W F , SHI Y L , HAN Y F . A method and device for adsorption testing : 201711103129.5 [P ] . 2021-12-24 .
KOROS R M , NOWAK E J . A diagnostic test of the kinetic regime in a packed bed reactor [J ] . Chemical Engineering Science , 1967 , 22 : 470 .
WEI J M , IGLESIA E . Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO 2 or H 2 O to form synthesis gas and carbon on nickel catalysts [J ] . Journal of Catalysis , 2004 , 224 ( 2 ): 370 - 383 .
WEI J M , IGLESIA E . Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium [J ] . Journal of Catalysis , 2004 , 225 ( 1 ): 116 - 127 .
WEI J M , IGLESIA E . Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals [J ] . The Journal of Physical Chemistry B , 2004 , 108 ( 13 ): 4094 - 4103 .
EWBANK J L , KOVARIK L , KENVIN C C , et al . Effect of preparation methods on the performance of Co/Al 2 O 3 catalysts for dry reforming of methane [J ] . Green Chemistry , 2014 , 16 ( 2 ): 885 - 896 .
MOUSAVINEJAD S A , FARSI M , RAHIMPOUR M R . Role of promoter on the catalytic activity of novel hollow bimetallic Ni-Co/Al 2 O 3 catalyst in the dry reforming of methane process: Optimization using response surface methodology [J ] . Journal of the Energy Institute , 2024 , 113 : 101524 .
BLANKSBY S J , ELLISON G B . Bond dissociation energies of organic molecules [J ] . Accounts of Chemical Research , 2003 , 36 ( 4 ): 255 - 263 .
VAN HARDEVELD R , HARTOG F . The statistics of surface atoms and surface sites on metal crystals [J ] . Surface Science , 1969 , 15 ( 2 ): 189 - 230 .
RANKIN B R , GREELEY J . Trends in selective hydrogen peroxide production on transition metal surfaces from first principles [J ] . ACS Catalysis , 2012 , 2 ( 12 ): 2664 - 2672 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution