浏览全部资源
扫码关注微信
1.江苏省环境工程技术有限公司,江苏 南京 210019
2.中国矿业大学 低碳能源与动力工程学院,江苏 徐州 221116
Received:19 June 2024,
Revised:10 July 2024,
Published:25 March 2025
移动端阅览
周海云,张琳,王伟霞等.蓝藻水热碳化制备固体燃料:燃料特性及燃烧行为[J].低碳化学与化工,2025,50(03):82-88.
ZHOU Haiyun,ZHANG Lin,WANG Weixia,et al.Fuel properties and combustion behavior of solid fuel prepared from blue-green algae through hydrothermal carbonization[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):82-88.
周海云,张琳,王伟霞等.蓝藻水热碳化制备固体燃料:燃料特性及燃烧行为[J].低碳化学与化工,2025,50(03):82-88. DOI: 10.12434/j.issn.2097-2547.20240269.
ZHOU Haiyun,ZHANG Lin,WANG Weixia,et al.Fuel properties and combustion behavior of solid fuel prepared from blue-green algae through hydrothermal carbonization[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):82-88. DOI: 10.12434/j.issn.2097-2547.20240269.
蓝藻含水率高达99%以上,采用热解等热化学处理方法时需要对蓝藻进行干燥预处理,能耗极高。针对该问题,对含水率92.94%的蓝藻进行水热碳化(HTC)处理,研究了水热温度(180~260 ℃)、保温时长(0~3 h)和升温速率(1 ℃/min和1 ℃/6 min)对水热炭燃料特性及燃烧行为的影响。结果表明,通过水热碳化处理,蓝藻挥发分含量降低了9.92%~29.13%,灰分含量提高了8.54%~25.52%,固定碳含量提高了0.82%~5.26%。蓝藻水热炭燃烧可分为干燥脱水、挥发分脱除以及挥发分和固定碳燃烧3个阶段。水热碳化处理提高了蓝藻的着火温度(505~583 K)和燃尽温度(747~812 K),更加有利于蓝藻储存和运输。动力学分析结果表明,挥发分脱除及其燃烧阶段为一级反应,活化能为27.82~66.04 kJ/mol;固定碳燃烧阶段为二级反应,活化能为38.65~65.68 kJ/mol。本研究可为蓝藻资源化利用提供参考。
The moisture content of blue-green algae is over 99%. when using thermochemical treatment methods such as pyrolysis
it is necessary to dry and pretreat the blue-green algae
which consumes a high amount of energy. To address this issue
hydrothermal carbonization (HTC) was applied to blue-green algae with a moisture content of 92.94%. The effects of hydrothermal temperature (180 ℃ to 260 ℃)
holding time (0 h to 3 h)
and heating rate (1 ℃/min and 1 ℃/6 min) on the fuel properties and combustion behavior of the resultant hydrochar were studied. The results indicate that HTC treatment reduces the volatile content of algae by 9.92% to 29.13%
increases ash content by 8.54% to 25.52%
and enhances fixed carbon content by 0.82% to 5.26%. Combustion of hydrochar from blue-green algae occurs in three stages: dehydration
volatile release
and combustion of volatiles and fixed carbon. HTC treatment elevates the ignition temperature (505 K to 583 K) and burnout temperature (747 K to 812 K)
which improves the storage and transport properties of the material. Kinetic analysis shows that the volatile release and its combustion stage follows a first-order reaction with an activation energy of 27.82 kJ/mol to 66.04 kJ/mol
while the fixed carbon combustion stage follows a second-order reaction with an activation energy of 38.65 kJ/mol to 65.68 kJ/mol. This study provides a reference for the resource utilization of blue-green algae.
WANG Y X , QIAN L L , YANG D R , et al . Integration of hydrothermal liquefaction of Cyanophyta and supercritical water oxidation of its aqueous phase products: Biocrude production and nutrient removal [J ] . Science of the Total Environment , 2024 , 914 : 169835 .
MATHIMANI T , LE T , SALMEN S H , et al . A first-of-its-kind study on founding concatenated trio fuels production platform: Biodiesel from lipids, biomethane by anaerobic digestion of defatted biomass, and hydrochar by hydrothermal carbonization of oscillatoria willei biogas slurry (OWBS) [J ] . Fuel , 2024 , 361 : 130639 .
周诗颖 , 冯兵 , 王强 , 等 . 水华藻类群体的形成、影响因素及竞争优势 [J/OL ] . 水生态学杂志 : 1 - 10 [ 2024-05-10 ] . DOI: 10.15928/j.1674-3075.202308130218 http://dx.doi.org/10.15928/j.1674-3075.202308130218 .
ZHOU S Y , FENG B , WANG Q , et al . The formation, influencing factors and competitive advantage of bloom algae colony [J/OL ] . Journal of Hydroecology , 1 - 10 [ 2024-05-10 ] . DOI: 10.15928/j.1674-3075.202308130218 http://dx.doi.org/10.15928/j.1674-3075.202308130218 .
LIU H H , CHEN Y Q , YANG H P , et al . Hydrothermal carbonization of natural microalgae containing a high ash content [J ] . Fuel , 2019 , 249 : 441 - 448 .
ZHANG J , CHEN Y H , XIA X , et al . Co-hydrothermal carbonization of polyvinyl chloride and lignocellulose biomasses for chlorine and inorganics removal [J ] . Waste Management , 2023 , 156 : 198 - 207 .
KHOO C G , LAM M K , MOHAMED A R , et al . Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: Effects of operational parameters and products characterization [J ] . Environmental Research , 2020 , 188 : 109828 .
ANSAH E , WANG L J , ZHANG B , et al . Catalytic pyrolysis of raw and hydrothermally carbonized Chlamydomonas debaryana microalgae for denitrogenation and production of aromatic hydrocarbons [J ] . Fuel , 2018 , 228 : 234 - 242 .
LENG L J , YANG L H , LENG S Q , et al . A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen [J ] . Science of the Total Environment , 2021 , 756 : 143679 .
SHEN Q , ZHU X Q , PENG Y , et al . Structure evolution characteristic of hydrochar and nitrogen transformation mechanism during co-hydrothermal carbonization process of microalgae and biomass [J ] . Energy , 2024 , 295 : 131028 .
葛仕福 , 赵培涛 , 李扬 , 等 . 污泥-秸秆衍生固体燃料燃烧特性 [J ] . 中国电机工程学报 , 2012 , 32 ( 17 ): 110 - 116+152 ..
GE S F , ZHAO P T , LI Y , et al . Combustion characteristics of sewage sludge-straw derived fuel [J ] . Proceedings of the CSEE , 2012 , 32 ( 17 ): 110 - 116+152 .
PARK K Y , LEE K , KIM D . Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization [J ] . Bioresource Technology , 2018 , 258 : 119 - 124 .
HE C , GIANNIS A , WANG J Y . Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior [J ] . Applied Energy , 2013 , 111 : 257 - 266 .
PATEL N , ACHARYA B , BASU P . Hydrothermal carbonization (HTC) of seaweed (macroalgae) for producing hydrochar [J ] . Energies , 2021 , 14 ( 7 ): 1805 .
牛文娟 , 冯雨欣 , 李楚仪 , 等 . 酸介质强化秸秆微波水热炭的理化和吸附性能 [J ] 太阳能学报 , 2023 , 44 ( 3 ): 270 - 276 .
NIU W J , FENG Y X , LI C Y , et al . Physicochemical and adsorption characteristics of microwave hydrochars from straw enhanced by acid media [J ] . Acta Energiae Solaris Sinica , 2023 , 44 ( 3 ): 270 - 276 .
LEVINE R B , SIERRA C O S , HOCKSTAD R , et al . The use of hydrothermal carbonization to recycle nutrients in algal biofuel production [J ] . Environmental Progress & Sustainable Energy , 2013 , 32 ( 4 ): 962 - 975 .
ZHANG Z M , ZHAO Y , WANG T F . Spirulina hydrothermal carbonization: Effect on hydrochar properties and sulfur transformation [J ] . Bioresource Technology , 2020 , 306 : 123148 .
XIAO H , ZHAI Y B , XIE J , et al . Speciation and transformation of nitrogen for spirulina hydrothermal carbonization [J ] . Bioresource Technology , 2019 , 286 : 121385 .
WILK M , ŚLIZ M , GAJEK M . The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp [J ] . Renewable Energy , 2021 , 177 : 216 - 228 .
DE SIQUEIRA CASTRO J , ASSEMANY P P , DE OLIVEIRA CARNEIRO A C , et al . Hydrothermal carbonization of microalgae biomass produced in agro-industrial effluent: Products, characterization and applications [J ] . Science of the Total Environment , 2021 , 768 : 144480 .
WANG T F , ZHAI Y B , ZHU Y , et al . A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties [J ] . Renewable and Sustainable Energy , 2018 , 90 : 223 - 247 .
SHRESTHA A , ACHARYA B , FAROOQUE A A . Study of hydrochar and process water from hydrothermal carbonization of sea lettuce [J ] . Renewable Energy , 2021 , 163 : 589 - 598 .
刘云云 , 曹运齐 , 余强 , 等 . 园林废弃物水热炭燃料特性研究 [J ] . 太阳能学报 , 2022 , 43 ( 7 ): 439 - 444 .
LIU Y Y , CAO Y Q , YU Q , et al . Research on fuel properties of garden waste hydrochars [J ] . Acta Energiae Solaris Sinica , 2022 , 43 ( 7 ): 439 - 444 .
POOMSAWAT S , POOMSAWAT W . Analysis of hydrochar fuel characterization and combustion behavior derived from aquatic biomass via hydrothermal carbonization process [J ] . Case Studies in Thermal Engineering , 2021 , 27 : 101255 .
ZHANG D L , SUN Z J , FU H Y , et al . Upgrading of cow manure by hydrothermal carbonization: Evaluation of fuel properties, combustion behaviors and kinetics [J ] . Renewable Energy , 2024 , 225 : 120269 .
CAI J X , LI B , CHEN C Y , et al . Hydrothermal carbonization of tobacco stalk for fuel application [J ] . Bioresource Technology , 2016 , 220 : 305 - 311 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution