浏览全部资源
扫码关注微信
中石化石油化工科学研究院有限公司,北京 100083
Received:14 June 2024,
Revised:16 July 2024,
Published:25 May 2025
移动端阅览
陈晓昂,张荣俊,徐润等.介孔铬/铈锆氧化物体系催化CO2氧化丙烷脱氢制丙烯反应性能研究[J].低碳化学与化工,2025,50(05):40-48.
CHEN Xiaoang,ZHANG Rongjun,XU Run,et al.Study on catalytic performance of mesoporous chromium/cerium-zirconium oxide system for CO2-oxidative propane dehydrogenation to propylene[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):40-48.
陈晓昂,张荣俊,徐润等.介孔铬/铈锆氧化物体系催化CO2氧化丙烷脱氢制丙烯反应性能研究[J].低碳化学与化工,2025,50(05):40-48. DOI: 10.12434/j.issn.2097-2547.20240261.
CHEN Xiaoang,ZHANG Rongjun,XU Run,et al.Study on catalytic performance of mesoporous chromium/cerium-zirconium oxide system for CO2-oxidative propane dehydrogenation to propylene[J].Low-Carbon Chemistry and Chemical Engineering,2025,50(05):40-48. DOI: 10.12434/j.issn.2097-2547.20240261.
丙烷脱氢(PDH)制丙烯是较为经济的制丙烯工艺之一,然而丙烷脱氢制丙烯存在丙烷单程转化率较低、催化剂中Cr负载量较高污染环境等问题。通过蒸发诱导自组装法合成了一系列不同
n
(Ce):
n
(Zr)铈锆氧化物,然后采用等体积浸渍法负载Cr制备了相应的催化剂,并选用CO
2
氧化丙烷脱氢(CO
2
-OPDH)法制备丙烯。通过XRD、N
2
吸/脱附、SEM、TEM和XPS等对催化剂进行了表征。结果表明,所有催化剂均形成了均一的铈锆固溶体,催化剂比表面积大于70 m
2
/g,存在介孔结构;随着
n
(Ce):
n
(Zr)减小,催化剂中
n
(Cr
3+
):(
n
(Cr
3+
) +
n
(Cr
6+
))逐渐增大,有利于提高其催化性能。所有催化剂均具有较高的丙烷初始转化率和丙烯选择性,在600 ℃、0.1 MPa和丙烷空速200 h
-1
的条件下,
n
(Ce):
n
(Zr) = 1:9的催化剂的丙烷初始转化率达到53%,反应稳定后丙烯选择性接近90%;而后随着
n
(Ce):
n
(Zr)增大,丙烷初始转化率逐渐降低。当
n
(Ce):
n
(Zr) = 5:5时,催化剂的丙烷初始转化率与工业剂相近。再生循环测试表明
n
(Ce):
n
(Zr) = 1:9时催化剂具有较好的再生稳定性,这也为后续低Cr负载量丙烷脱氢催化剂的开发提供了参考和借鉴。
Propane dehydrogenation (PDH) to propylene is an economical process. However
PDH faces challenges including low propane conversion and high Cr loading capacity in the catalyst
which contributes the environment pollution. To address these issues
a series of cerium-zirconium oxides with
n
(Ce):
n
(Zr) were synthesized by evaporation-induced self-assembly
and the corresponding catalysts were prepared by equal volume impregnation method and loaded with Cr
and CO
2
oxidative dehydrogenation of propane (CO
2
-OPDH) was explored as an alternative route for propylene production. The catalysts were characterized by XRD
N
2
adsorption/desorption
SEM
TEM and XPS. The results show that all catalysts form homogeneous cerium-zirconium solid solution with specific surface areas exceeding 70 m
2
/g and mesoporous structure. With the decrease of
n
(Ce):
n
(Zr)
n
(Cr
3+
):(
n
(Cr
3+
) +
n
(Cr
6+
) in the catalyst gradually increases
which enhances its catalytic performance. All catalysts have high initial propane conversion rate and propylene selectivity. With the increase of
n
(Ce):
n
(Zr)
the initial conversion rate of propane decreases gradually. The catalyst with
n
(Ce):
n
(Zr) of 1:9 exhibits initial propane conversi
on of 53% and propylene selectivity (when the reaction reaches stability ) close to 90% at 600 ℃
0.1 MPa and propane space velocity of 200 h
-1
. The catalyst with
n
(Ce):
n
(Zr) of 5:5 achieves a propane initial conversion rate comparable to that of industrial catalysts. Regeneration cycle test reveals that the catalyst with
n
(Ce):
n
(Zr) = 1:9 exhibits good stability
which provides valuable insights for the development of low-Cr loading capacity propane dehydrogenation catalysts. .
张健 . 我国丙烯下游产业发展现状及趋势分析 [J ] . 石化技术与应用 , 2022 , 40 ( 1 ): 66 - 71 .
ZHANG J . Development status and trend analysis of propylene downstream industry [J ] . Petrochemical Technology & Application , 2022 , 40 ( 1 ): 66 - 71 .
马龙 . 全球丙烯供需分析与预测 [J ] . 世界石油工业 , 2021 , 28 ( 5 ): 47 - 53 .
MA L . Analysis and forecast of global propylene supply and demand [J ] . World Petroleum Industry , 2021 , 28 ( 5 ): 47 - 53 .
陈永利 , 陈浩 , 郭振宇 . 丙烯产业发展现状及趋势分析 [J ] . 炼油技术与工程 , 2019 , 49 ( 12 ): 1 - 5 .
CHEN Y L , CHEN H , GUO Z Y . Present situation and trend analysis of propylene industry [J ] . Petroleum Refinery Engineering , 2019 , 49 ( 12 ): 1 - 5 .
隋秀鹏 , 王春明 , 刘昌呈 , 等 . 丙烷脱氢工艺降低能耗的技术路径探讨 [J ] . 炼油技术与工程 , 2023 , 53 ( 4 ): 1 - 4+8 .
SUI X P , WANG C M , LIU C C , et al . Discussion about technical paths of reducing energy consumptionin propane dehydrogenation process [J ] . Petroleum Refinery Engineering , 2023 , 53 ( 4 ): 1 - 4+8 .
CAVANI F , BALLARINI N , CERICOLA A . Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? [J ] . Catalysis Today , 2007 , 127 ( 1/2/3/4 ): 113 - 131 .
MICHORCZYK P , OGONOWSKI J , NIEMCZYK M . Investigation of catalytic activity of CrSBA-1 materials o btained by direct method in the dehydrogenation of propane with CO 2 [J ] . Applied Catalysis A: General , 2010 , 374 ( 1/2 ): 142 - 149 .
郭俊宝 , 钟顺和 , 邵怀启 . CO 2 氧化丙烷脱氢制丙烯Pd-Cu/MoO 3 -SiO 2 催化剂研究 [J ] . 天然气化工—C1化学与化工 , 2003 , 28 ( 5 ): 1 - 5+9 .
GUO J B , ZHONG S H , SHAO H Q . Study of propane oxiditive dehydrogenation to propene with carbon dioxide on Pd-Cu/MoO 3 -SiO 2 catalyst [J ] . Natural Gas Chemical Industry , 2003 , 28 ( 5 ): 1 - 5+9 .
XING F L , NAKAYA Y , YASUMURA S , et al . Ternary platinum-cobalt-indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation o f propane using CO 2 [J ] . Nature Catalysis , 2022 , 5 : 55 - 65 .
刘林 . 改性HZSM-5分子筛用于丙烷CO 2 耦合脱氢性能研究 [D ] . 银川 : 宁夏大学 , 2022 .
LIU L . Study on the properties of modified HZSM-5 molecular sieve for CO 2 coupling dehydrogenation of propane [D ] . Yinchuan : Ningxia University , 2022 .
GAO Y G , JIE X Y , WANG C Z , et al . One-pot synthesis of Ca oxide-promoted Cr catalysts for the dehydrogenation of propane using CO 2 [J ] . Industrial & Engineering Chemistry Research , 2020 , 59 ( 28 ): 12645 - 12656 .
XING F L , MA J M , SHIMIZU K I , et al . High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO 2 [J ] . Nature Communications , 2022 , 13 : 5065 .
夏瑶靓 , 边凯 , 刘思蕊 , 等 . PtSn@S-1 & β -Mo 2 C串联催化剂CO 2 氧化丙烷脱氢制丙烯性能研究 [J ] . 低碳化学与化工 , 2024 , 49 ( 7 ): 96 - 103 .
XIA Y L , BIAN K , LIU S R , et al . Study on performance of PtSn@S-1 & β -Mo 2 C tandem catalyst in CO 2 -oxidative propane dehydrogenation to propylene [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 7 ): 96 - 103 .
LIU H T , ZHANG Z , LI H Q , et al . Intrinsic kinetics of oxidative dehydrogenation of propane in the presence of CO 2 over Cr/MSU-1 catalyst [J ] . Journal of Natural Gas Chemistry , 2011 , 20 ( 3 ): 311 - 317 .
ASCOOP I , GALVITA V V , ALEXOPOULOS K , et al . The role of CO 2 in the dehydrogenation of propane over WO x -VO x /SiO 2 [J ] . Journal of Catalysis , 2016 , 335 : 1 - 10 .
XUE X L , LANG W Z , YAN X , et al . Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: Active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO 2 [J ] . ACS Applied Materials & Interfaces , 2017 , 9 ( 18 ): 15408 - 15423 .
ROGG S , HESS C . CO 2 as a soft oxidant for propane oxidative dehydrogenation: A mechanistic study using operando UV Raman spectroscopy [J ] . Journal of CO 2 Utilization , 2021 , 50 : 101604 .
WANG Z Y , HE Z H , SUN Y C , et al . Dehydrogenation of propane in the presence of CO 2 over GaN/SiO 2 catalysts: Relationship between the type of SiO 2 and the activity [J ] . Chemical Engineering Journal , 2022 , 433 : 134443 .
FARSAD A , LAWSON S , REZAEI F , et al . Oxidative dehydrogenation of propane over 3D printed mixed metal oxides/H-ZSM-5 monolithic catalysts using CO 2 as an oxidant [J ] . Catalysis Today , 2021 , 374 : 173 - 184 .
LAWSON S , NEWPORT K A , AXTELL A , et al . Structured bifunctional catalysts for CO 2 activation and oxidative dehydrogenation of propane [J ] . ACS Sustainable Chemistry & Engineering , 2021 , 9 ( 16 ): 5716 - 5727 .
TAKEHIRA K , OHISHI Y , SHISHIDO T , et al . Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO 2 [J ] . Journal of Catalysis , 2004 , 224 ( 2 ): 404 - 416 .
张彩凤 , 付辉 , 周大鹏 , 等 . 丙烷脱氢工艺及其市场分析 [J ] . 精细石油化工进展 , 2018 , 19 ( 5 ): 39 - 42 .
ZHANG C F , FU H , ZHOU D P , et al . Technology and market analysis of propane dehydrogenation [J ] . Advances in Fine Petrochemicals , 2018 , 19 ( 5 ): 39 - 42 .
吴同旭 , 杨玉旺 , 蔡奇 , 等 . CrO x /Al 2 O 3 丙烷脱氢催化剂性能研究 [J ] . 天然气化工—C1化学与化工 , 2016 , 41 ( 3 ): 16 - 20 .
WU T X , YANG Y W , CAI Q , et al . Catalytic performance of CrO x /Al 2 O 3 for dehydrogenation of propane [J ] . Natural Gas Chemical Industry , 2016 , 41 ( 3 ): 16 - 20 .
王振宇 , 郑步梅 , 张淑梅 . CuO、Ga 2 O 3 改性Cr 2 O 3 / γ -Al 2 O 3 催化剂丙烷脱氢反应性能研究 [J ] . 天然气化工—C1化学与化工 , 2016 , 41 ( 5 ): 15 - 19 .
WANG Z Y , ZHENG B M , ZHANG S M . Catalytic performances of CuO and Ga 2 O 3 modified catalysts for propane dehydrogenation [J ] . Natural Gas Chemical Industry , 2016 , 41 ( 5 ): 15 - 19 .
霍海辉 , 高文桂 , 毛文硕 , 等 . Cu-ZnO-CeO 2 催化剂组成对CO 2 加H 2 合成甲醇性能的影响 [J ] . 燃料化学学报 , 2019 , 47 ( 5 ): 523 - 531 .
HUO H H , GAO W G , MAO W S , et al . Effect of composition of Cu-ZnO-CeO 2 catalyst on its performance for methanol synthesis from CO 2 hydrogenation [J ] . Journal of Fuel Chemistry and Technology , 2019 , 47 ( 5 ): 523 - 531 .
TADA S , OCHIAI N , KINOSHITA H , et al . Active sites on Zn x Zr 1- x O 2- x solid solution catalysts for CO 2 -to-methanol hydrogenation [J ] . ACS Catalysis , 2022 , 12 ( 13 ): 7748 - 7759 .
DAI Y X , ZOU R , BA T , et al . Highly active and coke resistant Ni/CeZrO 2 catalyst prepared by cold plasma decomposition for CO 2 reforming of methane [J ] . Journal of CO 2 Utilization , 2021 , 51 : 101647 .
刘朝辉 , 侯根良 , 苏勋家 , 等 . 热处理温度对TiO 2 /SiO 2 复合气凝胶光催化性能的影响 [J ] . 无机材料学报 , 2012 , 27 ( 10 ): 1179 - 1183 .
LIU Z H , HOU G L , SU X J , et al . Effects of heat treatment temperature on photocatalytic activity of TiO 2 /SiO 2 composite aerogels [J ] . Journal of Inorganic Materials , 2012 , 27 ( 10 ): 1179 - 1183 .
HE Z H , WU B T , XIA Y , et al . CO 2 oxidative dehydrogenation of n -butane to butadiene over CrO x supported on CeZr solid solution [J ] . Molecular Catalysis , 2022 , 524 : 112262 .
BAO H Z , QIAN K , CHEN X Q , et al . Spectroscopic study of microstructure-reducibility relation of Ce x Zr 1- x O 2 solid solutions [J ] . Applied Surface Science , 2019 , 467/468 : 361 - 369 .
LI X H , FENG J , FAN H X , et al . The dehydrogenation of ethylbenzene with CO 2 over Ce x Zr 1- x O 2 solid solutions [J ] . Catalysis Communications , 2015 , 59 : 104 - 107 .
MARKARYAN G L , IKRYANNIKOVA L N , MURAVIEVA G P , et al . Red-ox properties and phase composition of CeO 2 -ZrO 2 and Y 2 O 3 -CeO 2 -ZrO 2 solid solutions [J ] . Colloids and Surfaces A: Physicochemical and Engineering Aspects , 1999 , 151 ( 3 ): 435 - 447 .
SANTHOSH KUMAR M , HAMMER N , RONNING M , et al . The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: New insights by a comprehensive spectroscopic study [J ] . Journal of Catalysis , 2009 , 261 ( 1 ): 116 - 128 .
CONLEY M P , DELLEY M F , NÚÑEZ-ZARUR F , et al . Heterolytic activation of C—H bonds on Cr III —O surface sites is a key step in catalytic polymerization of ethylene and dehydrogenation of propane [J ] . Inorganic Chemistry , 2015 , 54 ( 11 ): 5065 - 5078 .
DOU J , FUNDERBURG J , YANG K , et al . Ce x Zr 1- x O 2 -supported CrO x catalysts for CO 2 -assisted oxidative dehydrogenation of propane—Probing the active sites and strategies for enhanced stability [J ] . ACS Catalysis , 2023 , 13 ( 1 ): 213 - 223 .
师连杰 , 李博 , 李长明 . 丙烷脱氢催化剂积炭失活机理研究进展 [J ] . 江西化工 , 2022 , 38 ( 3 ): 70 - 73 .
SHI L J , LI B , LI C M . Research progress on deactivation mechanism of carbon deposition in propane dehydrogenation catalyst [J ] . Jiangxi Chemical Industry , 2022 , 38 ( 3 ): 70 - 73 .
XIE Z A , REN Y , LI J M , et al . Facile in situ synthesis of highly dispersed chromium oxide incorporated into mesoporous ZrO 2 for the dehydrogenation of propane with CO 2 [J ] . Journal of Catalysis , 2019 , 372 : 206 - 216 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution