浏览全部资源
扫码关注微信
1.中国科学院 成都有机化学有限公司,四川 成都 610041
2.中国科学院大学,北京 100049
3.石河子大学 化学化工学院,新疆 石河子 832003
4.新疆蓝山屯河聚酯有限公司,新疆 昌吉 831100
Received:15 June 2024,
Revised:23 July 2024,
Published:25 March 2025
移动端阅览
赵文强,邹胜,白元盛等.氮掺杂生物质炭的制备及作为催化剂载体在加氢领域研究进展[J].低碳化学与化工,2025,50(03):71-81.
ZHAO Wenqiang,ZOU Sheng,BAI Yuansheng,et al.Research progress on preparation of nitrogen-doped carbon materials from biomass and its application as catalyst carrier in hydrogenation field[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):71-81.
赵文强,邹胜,白元盛等.氮掺杂生物质炭的制备及作为催化剂载体在加氢领域研究进展[J].低碳化学与化工,2025,50(03):71-81. DOI: 10.12434/j.issn.2097-2547.20240257.
ZHAO Wenqiang,ZOU Sheng,BAI Yuansheng,et al.Research progress on preparation of nitrogen-doped carbon materials from biomass and its application as catalyst carrier in hydrogenation field[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):71-81. DOI: 10.12434/j.issn.2097-2547.20240257.
为实现“双碳”目标,高效催化低碳化合物加氢实现其高价值利用以及将来源广泛、可再生的生物质作为原料制备氮掺杂生物质炭材料用于催化加氢反应是当前研究热点。然而生物质的复杂性导致其在制备氮掺杂生物质炭材料时,炭材料表面性质与结构特性存在较大差异,氮掺杂生物质炭材料在催化加氢领域的工业应用仍存在较大挑战。对氮掺杂生物质炭材料制备及其作为催化剂载体在加氢领域的研究进行了综述。首先阐述了氮掺杂物种的类型及性质、氮掺杂生物质炭材料典型制备方法;其次,与其他催化剂载体进行了对比,总结了近年来国内外氮掺杂生物质炭材料在催化加氢反应中的研究进展;最后,对用于催化加氢领域的氮掺杂生物质炭材料的未来发展趋势进行了展望,以期为推动氮掺杂生物质炭材料在催化加氢领域的发展提供参考。
In order to achieve “carbon peaking and carbon neutrality goals”
the efficient catalytic hydrogenation of low-carbon compounds to realize their high-value utilization and the preparation of nitrogen-doped carbon materials from biomass
which is widely available and renewable
as a feedstock for the catalytic hydrogenation reaction are the hot spots of current research. However
the complexity of biomass leads to the large differences in the surface properties and structural characteristics of carbon materials when preparing nitrogen-doped biochar
and the industrial application of nitrogen-doped biomass carbon materials in the field of catalytic hydrogenation is still a big challenge. The research on the preparation of nitrogen-doped biomass carbon materials and their use as catalyst carriers in hydrogenation was reviewed. Firstly
the types and properties of nitrogen-doped species and the typical preparation methods of nitrogen-doped biomass carbon materials were described. Secondly
the research progress on nitrogen-doped biomass carbon materials in catalytic hydrogenation reactions at home and abroad in recent years was summarized by comparing them with other catalyst carriers. Finally
the future development trends of nitrogen-doped biomass carbon materials used in the field of catalytic hydrogenation were prospected
with the aim of providing references for promoting the progress on nitrogen-doped biomass carbon materials in the field of catalytic hydrogenation.
MA Y , SHEN Y J , LIU M J , et al . Selective hydrogenation of benzylidenethiazolidinedione exocyclic alkene with anti-poisoning nitrogen-doped carbon supported palladium catalysts [J ] . Catalysis Letters , 2023 , 154 : 387 - 396 .
ZHANG J , DUAN C M , HUANG X F , et al . A review on research progress and prospects of agricultural waste-based activated carbon: Preparation, application, and source of raw materials [J ] . Journal of Materials Science , 2024 , 59 ( 13 ): 5271 - 5292 .
LAN G J , YANG J , YE R P , et al . Sustainable carbon materials toward emerging applications [J ] . Small Methods , 2021 , 5 ( 5 ): 2001250 .
骆美宇 , 李音 , 刘玉鹏 , 等 . 高温烟气活化生物炭制备活性炭及其Cu 2+ 吸附性能 [J ] . 低碳化学与化工 , 2023 , 48 ( 6 ): 98 - 106 .
LUO M Y , LI Y , LIU Y P , et al . Preparation of activated carbon from high-temperature flue gas activated biochar and their Cu 2+ adsorption performance [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 6 ): 98 - 106 .
YI H , HUO X W , GU J H , et al . Boron doping positively enhances the catalytic activity of carbon materials for the removal of bisphenol A [J ] . RCS Advances , 2022 , 12 ( 34 ): 21780 - 21792 .
李博远 , 王亚通 , 王安 , 等 . 铝掺杂碳材料的制备及其对刚果红吸附性能研究 [J ] . 现代化工 , 2022 , 42 ( S2 ): 279 - 282 .
LI B Y , WANG Y T , WANG A , et al . Preparation of Al-doped carbon material and study on its adsorption performance for Congo red [J ] . Modern Chemical Industry , 2022 , 42 ( S2 ): 279 - 282 .
邵宗涵 , 肖柯 , 赵宇 , 等 . 磷掺杂氮缺陷 g -C 3 N 4 的合成及其光催化性能研究 [J ] . 化工新型材料 , 2024 , 52 ( 3 ): 214 - 219 .
SHAO Z H , XIAO K , ZHAO Y , et al . Synthesis of phosphorus-doped nitrogen-deficient g -C 3 N 4 and its photocatalytic performance [J ] . New Chemical Materials , 2024 , 52 ( 3 ): 214 - 219 .
WU Z Y , ZHANG J L , HU S , et al . Efficiently treating waste nylon-tire to prepare sulfur and nitrogen doped porous carbon material via pyrolysis and activation [J ] . Journal of Environmental Chemical Engineering , 2022 , 10 ( 4 ): 108103 .
LIU D D , WANG J Y , LI Z X , et al . Ultrathin nitrogen-rich porous carbon nanosheets with fluorine doping for high-performance potassium storage [J ] . Electrochimica Acta , 2022 , 411 : 140094 .
CHEN W , CHEN Y Q , YANG H P , et al . Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature [J ] . Bioresource Technology , 2018 , 249 : 247 - 253 .
CHEN W , YANG H P , CHEN Y Q , et al . Transformation of nitrogen and evolution of N-containing species during algae pyrolysis [J ] . Environmental Science & Technology , 2017 , 51 ( 11 ): 6570 - 6579 .
南东宏 , 李凯 , 谢金恒 , 等 . 生物质基掺氮多孔炭材料研究进展 [J ] . 新能源进展 , 2022 , 10 ( 2 ): 103 - 110 .
NAN D H , LI K , XIE J H , et al . Progress in biomass-based nitrogen doped porous carbon materials [J ] . Advances in New and Renewable Energy , 2022 , 10 ( 2 ): 103 - 110 .
SHI Z S , YANG W Q , GU Y T , et al . Metal-nitrogen-doped carbon materials as highly efficient catalysts: Progress and rational design [J ] . Advanced Science , 2020 , 7 ( 15 ): 2001069 .
HAM K Y , SHIN D Y , LEE J Y . The role of lone-pair electrons in Pt-N interactions for the oxygen reduction reaction in polymer exchange membrane fuel cells [J ] . ChemSusChem , 2020 , 13 ( 7 ): 1751 - 1758 .
WU G , MACK N H , GAO W , et al . Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O 2 battery cathodes [J ] . ACS Nano , 2012 , 6 ( 11 ): 9764 - 9776 .
CAO Y L , MAO S J , LI M M , et al . Metal/porous carbon composites for heterogeneous catalysis: Old catalysts with improved performance promoted by N-doping [J ] . ACS Catalysis , 2017 , 7 ( 12 ): 8090 - 8112 .
AL-HAJRI W , DE LUNA Y , BENSALAH N . Review on recent applications of nitrogen-doped carbon materials in CO 2 capture and energy conversion and storage [J ] . Energy Technology , 2022 , 10 ( 12 ): 2200498 .
LI B Y , HOLBY E F , WANG G F . Mechanistic insights into metal, nitrogen doped carbon catalysts for oxygen reduction: Progress in computational modeling [J ] . Journal of Materials Chemistry A , 2022 , 10 ( 45 ): 23959 - 23972 .
YANG M , QIN B , SI C W , et al . Electrochemical reactions catalyzed by carbon dots from computational investigations: Functional groups, dopants, and defects [J ] . Journal of Materials Chemistry A , 2024 , 12 ( 5 ): 2520 - 2560 .
SEKHON S S , KAUR P , PARK J S . From coconut shell biomass to oxygen reduction reaction catalyst: Tuning porosity and nitrogen doping [J ] . Renewable and Sustainable Energy Reviews , 2021 , 147 : 111173 .
MARUYAMA J , SATO H , TAKAO Y , et al . Preferred catalysis distinctly determined by metals doped with nitrogen in three-dimensionally ordered porous carbon materials [J ] . Nanoscale , 2023 , 15 ( 23 ): 9954 - 9963 .
任永旺 , 王一泽 , 常飞祥 , 等 . 氮掺杂碳改性Ni/Al 2 O 3 催化剂的甲烷干重整反应性能研究 [J ] . 低碳化学与化工 , 2023 , 48 ( 3 ): 49 - 55 .
REN Y W , WANG Y Z , CHANG F X , et al . Performance study of nitrogen-doped carbon-modified Ni/Al 2 O 3 catalysts for methane dry reforming reaction [J ] . Low-Carbon Chemistry and Chemical Engineering , 2023 , 48 ( 3 ): 49 - 55 .
ZOU K X , GUAN Z X , DENG Y F , et al . Nitrogen-rich porous carbon in ultra-high yield derived from activation of biomass waste by a novel eutectic salt for high performance Li-ion capacitors [J ] . Carbon , 2020 , 161 : 25 - 35 .
HU L T , HOU J X , MA Y , et al . Multi-heteroatom self-doped porous carbon derived from swim bladders for large capacitance supercapacitors [J ] . Journal of Materials Chemistry A , 2016 , 4 ( 39 ): 15006 - 15014 .
李宇明 , 刘梓烨 , 张启扬 , 等 . 氮掺杂碳材料的制备及其在催化领域中的应用 [J ] . 化工学报 , 2021 , 72 ( 8 ): 3919 - 3932 .
LI Y M , LIU Z Y , ZHANG Q Y , et al . Preparation of nitrogen-doped carbon materials and their applications in catalysis [J ] . CIESC Journal , 2021 , 72 ( 8 ): 3919 - 3932 .
MATSAGAR B , YANG R X , DUTTA S , et al . Recent progress in the development of biomass-derived nitrogen-doped porous carbon [J ] . Journal of Materials Chemistry A , 2021 , 9 ( 7 ): 3703 - 3728 .
LEE D W , JIN M H , PARK J H , et al . Flexible synthetic strategies for lignin-derived hierarchically porous carbon materials [J ] . ACS Sustainable Chemistry & Engineering , 2018 , 6 ( 8 ): 10454 - 10462 .
LIU F Y , WANG Z X , ZHANG H T , et al . Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin [J ] . Carbon , 2019 , 149 : 105 - 116 .
CHEN Z H , PENG X W , ZHANG X T , et al . Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application [J ] . Carbohydrate Polymers , 2017 , 170 : 107 - 116 .
ZHOU X , WANG P L , ZHANG Y G , et al . Biomass based nitrogen-doped structure-tunable versatile porous carbon materials [J ] . Journal of Materials Chemistry A , 2017 , 5 ( 25 ): 12958 - 12968 .
TANG M H , DENG J , LI M M , et al . 3D-interconnected hierarchical porous N-doped carbon supported ruthenium nanoparticles as an efficient catalyst for toluene and quinoline hydrogenation [J ] . Green Chemistry , 2016 , 18 ( 22 ): 6082 - 6090 .
YANG P , ZHANG J W , LIU D , et al . Facile synthesis of porous nitrogen-doped carbon for aerobic oxidation of amines to imines [J ] . Microporous and Mesoporous Materials , 2018 , 266 : 198 - 203 .
SONG L W , YUAN Y , WANG Y , et al . Cu-MOF-derived Cu nanoparticles decorated porous N-doped biochar for low-temperature H 2 S desulfurization [J ] . Fuel , 2024 , 368 : 131682 .
ZHANG H , WU W L , DING H , et al . Fabrication of modified-N-doped porous biochar and its enhanced adsorption of bisphenol-A: Critical contribution to π-π interactions by nitrogen doping [J ] . Surfaces and Interfaces , 2024 , 45 : 103880 .
CHANG B B , SHI W W , YIN H , et al . Poplar catkin-derived self-templated synthesis of N-doped hierarc hical porous carbon microtubes for effective CO 2 capture [J ] . Chemical Engineering Journal , 2019 , 358 : 1507 - 1518 .
ZHU Z L , YANG X B , YE X , et al . Activating peroxymonosulfate by high nitrogen-doped biochar from lotus pollen for efficient degradation of organic pollutants from water: Performance, kinetics and mechanism investigation [J ] . Separation and Purification Technology , 2024 , 346 : 127456 .
WU W J , WU C L , LIU J , et al . Nitrogen-doped porous carbon through K 2 CO 3 -activated bamboo shoot shell for an efficient CO 2 adsorption [J ] . Fuel , 2024 , 363 : 130937 .
SEVILLA M , FUERTES A . Easy synthesis of graphitic carbon nanocoils from saccharides [J ] . Materials Chemistry and Physics , 2009 , 113 ( 1 ): 208 - 214 .
曲伟强 , 赵佳辉 , 王双 , 等 . 超级电容器用生物质基碳材料研究进展 [J ] . 低碳化学与化工 , 2024 , 49 ( 10 ): 38 - 46 .
QU W Q , ZHAO J H , WANG S , et al . Research progress of biomass-based carbon materials for supercapacitors [J ] . Low-Carbon Chemistry and Chemical Engineering , 2024 , 49 ( 10 ): 38 - 46 .
WHITE R , YOSHIZAWA N , ANTONIETTI M , et al . A sustainable synthesis of nitrogen-doped carbon aerogels [J ] . Green Chemistry , 2011 , 13 ( 9 ): 2428 - 2434 .
ZHAO L , BACCILE N , GROSS S , et al . Sustainable nitrogen-doped carbonaceous materials from biomass derivatives [J ] . Carbon , 2010 , 48 ( 13 ): 3778 - 3787 .
VAHDATI-KHAJEH S , ZIRAK M , TEJRAG R , et al . Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution [J ] . Surfaces and Interfaces , 2019 , 15 : 157 - 165 .
ZHENG F Y , LI R S , GE S Y , et al . Nitrogen and phosphorus co-doped carbon networks derived from shrimp shells as an efficient oxygen reduction catalyst for microbial fuel cells [J ] . Journal of Power Sources , 2020 , 446 : 227356 .
WANG M , WANG Q W , WANG X H , et al . Nitrogen doped biomass derived carbon and BiVO 4 composite for simultaneous detection of furazolidone and chloramphenicol [J ] . Microchemical Journal , 2024 , 197 : 109810 .
LAGINHAS C , VALENTA NABAIS J , TITIRICI M . Activated carbons with high nitrogen content by a combination of hydrothermal carbonization with activation [J ] . Microporous and Mesoporous Materials , 2016 , 226 : 125 - 132 .
PEVIDA C , PLAZA M , ARIAS B , et al . Surface modification of activated carbons for CO 2 capture [J ] . Applied Surface Science , 2008 , 254 ( 22 ): 7165 - 7172 .
CHEN P , WANG L K , WANG G , et al . Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: An efficient catalyst for oxygen reduction reaction [J ] . Energy & Environmental Science , 2014 , 7 ( 12 ): 4095 - 4103 .
HU Y J , TONG X , ZHUO H , et al . 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO 2 adsorption [J ] . RSC Advances , 2016 , 6 ( 19 ): 15788 - 15795 .
LI Y J , WANG G L , WEI T , et al . Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors [J ] . Nano Energy , 2016 , 19 : 165 - 175 .
ZHANG Y M , WANG F , ZHU H , et al . Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors [J ] . Applied Surface Science , 2017 , 426 : 99 - 106 .
YUAN X L , AN N H , ZHU Z X , et al . Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions [J ] . Process Safety and Environmental Protection , 2018 , 119 : 320 - 329 .
CHENG Z Q , WANG Z W , WU P C , et al . Mass fabrication of oxygen and nitrogen co-doped 3D hierarchical porous carbon nanosheets by an explosion-assisted strategy for supercapacitor and dye adsorption application [J ] . Applied Surface Science , 2020 , 529 : 147079 .
LI Q Y , HOU Y Q , WANG J C , et al . Superiority of raw biomass and potassium hydroxide in preparation of ultrahigh nitrogen doping of carbon for NH 3 -SCR reaction [J ] . ACS Sustainable Chemistry & Engineering , 2020 , 8 ( 30 ): 11308 - 11316 .
NIE R F , PENG X L , ZHANG H F , et al . Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst [J ] . Catalysis Science & Technology , 2017 , 7 ( 3 ): 627 - 634 .
YANG H H , NIE R F , XIA W , et al . Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid [J ] . Green Chemistry , 2017 , 19 ( 23 ): 5714 - 5722 .
LI B H , LI C , LI D Q , et al . Cross-polymerization between bio-oil and polyaniline: Synergistic effects on pore development in subsequent activation and adsorption of phenol [J ] . Industrial Chemistry & Materials , 2024 , 2 ( 4 ): 600 - 612 .
XU X , TANG M H , LI M M , et al . Hydrogenation of benzoic acid and derivatives over Pd nanoparticles supported on N-doped carbon derived from glucosamine hydrochloride [J ] . ACS Catalysis , 2014 , 4 ( 9 ): 3132 - 3135 .
MA Y D , ZHAO H Y , ZHANG S Y , et al . Efficient room-temperature hydrogenation of nitroaromatic compounds to primary amines using nitrogen-doped carbon-supported palladium catalysts [J ] . New Journal of Chemistry , 2024 , 48 ( 5 ): 2261 - 2268 .
WEI Z Z , WANG J , MAO S J , et al . In situ-generated Co 0 -Co 3 O 4 /N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes [J ] . ACS Catalysis , 2015 , 5 ( 8 ): 4783 - 4789 .
LIU L , WANG B W , GAO R X , et al . Biomass-derived Fe-NC hybrid for hydrogenation with formic acid: Control of Fe-based nanoparticle distribution [J ] . RSC Advances , 2020 , 10 ( 18 ): 10689 - 10694 .
WANG H , LIU X H , XU G Y , et al . In situ synthesis of Fe-N-C catalysts from cellulose for hydrogenation of nitrobenzene to aniline [J ] . Chinese Journal of Catalysis , 2019 , 40 ( 10 ): 1557 - 1565 .
ZHANG G Y , WANG Y H , DOU S X , et al . MoO x regulating Ni-based catalyst anchored on N-doped carbon microsphere s for catalytic hydrogenation of nitroarenes [J ] . Separation and Purification Technology , 2024 , 337 : 126265 .
FAN M J , GAO X M , SHAO Y W , et al . Nitrogen species from Spirulina platensis derived bio-oil enhance catalytic activity of cobalt catalysts for hydrogenation [J ] . Energy , 2024 , 298 : 131240 .
KOSOL R , GUO L S , KODAMA N Y , et al . Iron catalysts supported on nitrogen functionalized carbon for improved CO 2 hydrogenation performance [J ] . Catalysis Communications , 2021 , 149 : 106216 .
NIU J C , AI P P , GUO Q W , et al . The effect of nitrogen doping on hydrogenation capability and stability of Cu-based catalyst in ester hydrogenation to methyl glycolate [J ] . Fuel , 2023 , 351 : 128866 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution