浏览全部资源
扫码关注微信
1.河北河钢材料技术研究院有限公司,河北 石家庄 050023
2.河北省氢冶金低碳技术重点实验室,河北 石家庄 050023
Received:29 May 2024,
Revised:11 July 2024,
Published:25 March 2025
移动端阅览
李鹏阳,张彩东,王改荣等.CO2还原合成甲醇反应器研究进展[J].低碳化学与化工,2025,50(03):1-11.
LI Pengyang,ZHANG Caidong,WANG Gairong,et al.Research progress on reactors for reduction of CO2 to methanol[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):1-11.
李鹏阳,张彩东,王改荣等.CO2还原合成甲醇反应器研究进展[J].低碳化学与化工,2025,50(03):1-11. DOI: 10.12434/j.issn.2097-2547.20240239.
LI Pengyang,ZHANG Caidong,WANG Gairong,et al.Research progress on reactors for reduction of CO2 to methanol[J].Low-carbon Chemistry and Chemical Engineering,2025,50(03):1-11. DOI: 10.12434/j.issn.2097-2547.20240239.
CO
2
还原合成甲醇是实现碳减排和碳资源利用的有效途径之一。反应器作为CO
2
还原合成甲醇反应系统的核心,其优化和创新至关重要。介绍了CO
2
还原合成甲醇3种催化途径(热催化、光催化和电催化),综述了CO
2
还原合成甲醇反应器研究进展及其优缺点,并对反应器后续的研究方向和应用前景进行了展望。热催化反应器改进可采用原位冷凝、原位吸附和膜分离技术,旨在打破热力学平衡限制和解决副产水导致的催化剂失活问题,但膜在热催化条件下不具备长期稳定性,因此开发高热稳定性、高化学稳定性的膜材料是关键。光催化作为绿色路线应用前景广阔,但目前反应器效率较低且需要恒定光源,而系统稳定性不佳也制约了其规模放大,可通过改进反应器结构和研发新型光活化材料,提高反应器光利用、光捕获性能,以及改善传质。电催化途径反应条件温和,可以再生电力为驱动,工业应用潜力巨大,在反应器(电解槽)中应用气体扩散电极(GDE)可有效增强传质和提高电极效率,但存在气体扩散层堵塞、系统稳定性差和膜寿命短等问题。
Reduction of CO
2
to methanol is an effective pathway for achieving carbon reduction and carbon resource utilization. As the core of the CO₂ to methanol reduction system
the optimization and innovation of reactors are crucial. Three catalytic pathways (thermal catalysis
photocatalysis and electrocatalysis) for reduction of CO
2
to methanol were introduced. The research progress on reactors for reduction of CO
2
to methanol and their advantages and disadvantages were reviewed
and future research directions and application prospects were discussed. For thermal catalytic reactors
in-situ condensation
in-situ adsorption and membrane separation technologies can be employed to overcome thermodynamic equilibrium limitations and address catalyst deactivation caused by by-product water. However
membranes lack long-term stability under thermal catalytic conditions
making the development of membranes with high thermal and chemical stability essential. Photocatalysis
as a green pathway
holds great application potential
but reactor efficiency is currently low and requires a constant light source. Moreover
poor system stability limits its scalability. Improvements in reactor structure and the development o
f novel photoactive materials are needed to enhance light utilization and capture
as well as mass transfer. Electrocatalysis operates under mild conditions and can be driven by renewable electricity
offering significant industrial potential. The application of gas diffusion electrodes (GDE) in reactors (electrolyzers) can effectively enhance mass transfer and improve electrode efficiency. However
there are issues such as gas diffusion layer blockage
poor system stability and short membrane lifespan.
LI M H , WANG H F , LUO W , et al . Heterogeneous single-atom catalysts for electrochemical CO 2 reduction reaction [J ] . Advanced Materials , 2020 , 32 ( 34 ): 2001848 .
GONZALE-GARAY A , FREI M S , AL-QAHTANI A , et al . Plant-to-planet analysis of CO 2 -based methanol processes [J ] . Energy & Environmental Science , 2019 , 12 ( 12 ): 3425 - 3436 .
OLAH G A . Beyond oil and gas: The methanol economy [J ] . Angewandte Chemie International Edition , 2005 , 44 ( 18 ): 2636 - 2639 .
郭嘉懿 , 何育荣 , 马晶晶 , 等 . 二氧化碳催化加氢制甲醇研究进展 [J ] . 洁净煤技术 , 2023 , 29 ( 4 ): 49 - 64 .
GUO J Y , HE Y R , MA J J , et al . Research progress on catalytic hydrogenation of carbon dioxide to methonal [J ] . Clean Coal Technology , 2023 , 29 ( 4 ): 49 - 64 .
JIANG X , NIE X W , GUO X W , et al . Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J ] . Chemical Reviews , 2020 , 120 ( 15 ): 7984 - 8034 .
陈倬 , 庄原发 , 杜文韬 , 等 . CO 2 加氢制甲醇技术研发及应用前景浅析 [J ] . 东方电气评论 , 2023 , 37 ( 3 ): 6 - 10+14 .
CHEN Z , ZHUAN Y F , DU W T , et al . Research and application prospect of CO 2 hydrogenation to methanol technology [J ] . Dongfang Electric Review , 2023 , 37 ( 3 ): 6 - 10+14 .
许月阳 , 薛志刚 , 柳波 , 等 . 膜反应器用于二氧化碳加氢转变燃料的研究进展 [J ] . 膜科学与技术 , 2024 , 44 ( 3 ): 143 - 152 .
XU Y Y , XUE Z G , LIU B , et al . Research progress on membrane reactor for CO 2 hydrogenation to fuels [J ] . Membrane Science and Technology , 2024 , 44 ( 3 ): 143 - 152 .
WANG Z Q , YANG Z Q , KADIROVA Z C , et al . Photothermal functional material and structure for photothermal catalytic CO 2 reduction: recent advance, application and prospect [J ] . Coordination Chemistry Reviews , 2022 , 473 : 214794 .
WIRANARONGKORN K , EAMSIRI K , CHEN Y S , et al . A comprehensive review of electrochemical reduction of CO 2 to methanol: Technical and design aspects [J ] . Journal of CO 2 Utilization , 2023 , 71 : 102477 .
张凡 , 李伟起 . 关于二氧化碳化工利用技术研究进展与应用前景的思考 [J ] . 当代化工研究 , 2023 , ( 2 ): 11 - 13 .
ZHANG F , LI W Q . Research progress and application of chemical utilization technology of carbon dioxide [J ] . Modern Chemical Research , 2023 , ( 2 ): 11 - 13 .
YAASHIKAA P R , KUMAR P S , VARJANI S J , et al . A review on photochemical, biochemical and electrochemical transformation of CO 2 into value-added products [J ] . Journal of CO 2 Utilization , 2019 , 33 : 131 - 147 .
RAN J R , JARONIEC M , QIAO S Z . Co catalysts in semiconductor-based photocatalytic CO 2 reduction: Achievements, challenges, and opportunities [J ] . Advanced Materials , 2018 , 30 ( 7 ): 1704649 - 1704679 .
KHAN A A , TAHIR M . Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO 2 reduction to renewable fuels [J ] . Journal of CO 2 Utilization , 2019 , 29 : 205 - 239 .
ZHANG W J , HU Y , MA L B , et al . Progress and perspective of electrocatalytic CO 2 reduction for renewable carbonaceous fuels and chemicals [J ] . Advanced Science , 2018 , 5 ( 1 ): 1700275 .
SUN Z Y , MA T , TAO H C , et al . Fundamentals and challenges of electrochemical CO 2 reduction using two-dimensional materials [J ] . Chem , 2017 , 3 ( 4 ): 560 - 587 .
ZHANG L , ZHAO Z J , GONG J L . Nanostructured materials for heterogeneous electrocatalytic CO 2 reduction and their related reaction mechanisms [J ] . Angewandte Chemie International Edition , 2017 , 56 ( 38 ): 11326 - 11353 .
ENDRODI B , BENCSIK G , DARVAS F , et al . Continuous-flow electroreduction of carbon dioxide [J ] . Progress in Energy and Combustion Science , 2017 , 62 : 133 - 154 .
DOSS B , RAMOS C , ATKNS S . Optimization of methanol synthesis from carbon dioxide and hydrogen: Demonstration of a pilot-scale carbon-neutral synthetic fuels process [J ] . Energy & Fuels , 2009 , 23 ( 9 ): 4647 - 4650 .
GONG J W , SADAT-ZEBARJAD F , JESSEN K , et al . An experimental and modeling study of the application of membrane contactor reactors to methanol synthesis using pure CO 2 feeds [J ] . Chemical Engineering and Processing-Process Intensification , 2023 , 183 : 109241 .
BOS M J , BRILMAN D W F . A novel condensation reactor for efficient CO 2 to methanol conversion for storage of renewable electric energy [J ] . Chemical Engineering Journal , 2015 , 278 : 527 - 532 .
BOS M J , SLOTBOOM Y , KERSTEN S R A , et al . Characterization of a condensing CO 2 to methanol reactor [J ] . Industrial & Engineering Chemistry Research , 2019 , 58 ( 31 ): 13987 - 13999 .
WIRNER L C , KOSAKA F , SASAYAMA T , et al . Combined capture and reduction of CO 2 to methanol using a dual-bed packed reactor [J ] . Chemical Engineering Journal , 2023 , 470 : 144227 .
WAGIALLA K M , ELNASHAIEl S . Fluidized-bed reactor for methanol synthesis. A theoretical investigation [J ] . Industrial & Engineering Chemistry Research , 1991 , 30 ( 10 ): 2298 - 2308 .
ABASHAR M E E . Coupling of steam and dry reforming of methane in catalytic fluidized bed membrane reactors [J ] . International Journal of Hydrogen Energy , 2004 , 29 ( 8 ): 799 - 808 .
RAHIMPOUR M R , RAHMANI F , BAYAT M . Contribution to emission reduction of CO 2 by a fluidized-bed membrane dual-type reactor in methanol synthesis process [J ] . Chemical Engineering and Processing-Process Intensification , 2010 , 49 ( 6 ): 589 - 598 .
BAYATS M , DEHGHANI Z , RAHIMPOUR M R . Sorption-enhanced methanol synthesis in a dual-bed reactor: Dynamic modeling and simulation [J ] . Journal of the Taiwan Institute of Chemical Engineers , 2014 , 45 ( 5 ): 2307 - 2318 .
ZHU W , GORA L , VAN DEN BERG A W C , et al . Water vapour separation from permanent gases by a zeolite-4A membrane [J ] . Journal of Membrane Science , 2005 , 253 ( 1/2 ): 57 - 66 .
ABASHAR M E E , AL-RABIAH A A . Investigation of the efficiency of sorption-enhanced methanol synthesis process in circulating fast fluidized bed reactors [J ] . Fuel Processing Technology , 2018 , 179 : 387 - 398 .
ABASHAR M E E , AL-RABIAH A A . Highly efficient CO 2 hydrogenation to methanol via in-situ condensation and sorption in a novel multi-stage circulating fast fluidized bed reactor [J ] . Chemical Engineering Journal , 2022 , 439 : 135628 .
SADAT-ZEBARJAD F , GONG J W , LI Z T , et al . Simulation of methanol synthesis in a membrane-contactor reactor [J ] . Journal of Membrane Science , 2022 , 661 : 120677 .
LI H Z , QIU C L , REN S J , et al . Na + -gated water-conducting nanochannels for boosting CO 2 conversion to liquid fuels [J ] . Science , 2020 , 367 ( 6478 ): 667 - 671 .
YUE W Z , LI Y H , WEI W , et al . Highly selective CO 2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor [J ] . Angewandte Chemie International Edition , 2021 , 60 ( 33 ): 18289 - 18294 .
SESHIMO M , LIU B , LEE H R , et al . Membrane reactor for methanol synthesis using Si-rich LTA zeolite membrane [J ] . Membranes , 2021 , 11 ( 7 ): 505 .
IWAKIRI I G , MIGUEL C V , MADEIRA L M . Modeling and simulation of a steam-selective membrane reactor for power-to-methanol [J ] . Computers & Chemical Engineering , 2022 , 156 : 107555 .
SONG G Q , ZHOU W J , LI C , et al . Semi-hollow LTA zeolite membrane for water permeation in simulated CO 2 hydrogenation to methanol [J ] . Journal of Membrane Science , 2023 , 678 : 121666 .
TIAN C Y , HUANG A S . Synthesis of a Cu/Zn-BTC@LTA derivatived Cu-ZnO@LTA membrane reactor for CO 2 hydrogenation [J ] . Journal of Membrane Science , 2022 , 662 : 121010 .
LI K , AN X Q , PARK K H , et al . A critical review of CO 2 photoconversion: Catalysts and reactors [J ] . Catalysis Today , 2014 , 224 : 3 - 12 .
JESIC D , JURKOVIC D L , POHAR A , et al . Engineering photocatalytic and photoelectrocatalytic CO 2 reduction reactions: Mechanisms, intrinsic kinetics, mass transfer resistances, reactors and multi-scale modelling simulations [J ] . Chemical Engineering Journal , 2021 , 407 : 126799 .
GALLI F , COMPAGNONI M , VITALI D , et al . CO 2 photoreduction at high pressure to both g as and liquid products over titanium dioxide [J ] . Applied Catalysis B: Environmental , 2017 , 200 : 386 - 391 .
BAFAQEER A , TAHIR M , AMIN N A S , et al . Performance analysis of externally reflected photoreactor for CO 2 conversion to methanol using f-C 3 N 4 /ZnV 2 O 6 S-scheme photocatalyst [J ] . Environmental Technology & Innovation , 2023 , 30 : 103032 .
OLA O , MAROTO-VALER M M . Review of material design and reactor engineering on TiO 2 photocatalysis for CO 2 reduction [J ] . Journal of Photochemistry and Photobiology C: Photochemistry Reviews , 2015 , 24 : 16 - 42 .
NGUYEN T V , WU J C S . Photoreduction of CO 2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier [J ] . Applied Catalysis A: General , 2008 , 335 ( 1 ): 112 - 120 .
DU P , CARNEIRO J T , MOULIJN J A , et al . A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis [J ] . Applied Catalysis A: General , 2008 , 334 ( 1/2 ): 119 - 128 .
LIOU P Y , CHEN S C , WU J C , et al . Photocatalytic CO 2 reduction using an internally illuminated monolith photoreactor [J ] . Energy & Environmental Science , 2011 , 4 ( 4 ): 1487 - 1494 .
OLA O , MAROTO-VALER M M , LIU D , et al . Performance comparison of CO 2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO 2 catalyst under ultraviolet irradiation [J ] . Applied Catalysis B: Environmental , 2012 , 126 : 172 - 179 .
CHENG X , CHEN R , ZHU X , et al . Optofluidic membrane microreactor for photocatalytic reduction of CO 2 [J ] . International Journal of Hydrogen Energy , 2016 , 41 ( 4 ): 2457 - 2465 .
ANGULO-IBANEZ A , GOITANDIA A M , ALBO J , et al . Porous TiO 2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO 2 conversion [J ] . IScience , 2021 , 24 ( 6 ): 102654 .
ALBO J , GARCIA G . Enhanced visible-light photoreduction of CO 2 to methanol over Mo 2 C/TiO 2 surfaces in an optofluidic microreactor [J ] . Reaction Chemistry & Engineering , 2021 , 6 ( 2 ): 304 - 312 .
MA W C , HE X Y , WANG W , et al . Electrocatalytic reduction of CO 2 and CO to multi-carbon compounds over Cu-based catalysts [J ] . Chemical Society Reviews , 2021 , 50 ( 23 ): 12897 - 12914 .
GUZMAN H , RUSSO N , HERNANDEZ S . CO 2 valorisation towards alcohols by Cu-based electrocatalysts: Challenges and perspectives [J ] . Green Chemistry , 2021 , 23 ( 5 ): 1896 - 1920 .
HUSSAIN I , ALASIRI H , KHAN W U , et al . Advanced electrocatalytic technologies for conversion of carbon dioxide into methanol by electrochemical reduction: Recent progress and future perspectives [J ] . Coordination Chemistry Reviews , 2023 , 482 : 215081 .
YANG W F , DASTAFKAN K , JIA C , et al . Design of electrocatalysts and electrochemical cells for carbon dioxide reduction reactions [J ] . Advanced Materials Technologies , 2018 , 3 ( 9 ): 1700377 .
LEES E W , MOWBRAY B A , PARLANE F G , et al . Gas diffusion electrodes and membranes for CO 2 reduction electrolysers [J ] . Nature Reviews Materials , 2022 , 7 ( 1 ): 55 - 64 .
ALBO J , IRABIEN A . Cu 2 O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO 2 to methanol [J ] . Journal of Catalysis , 2016 , 343 : 232 - 239 .
ROMILUYI O , DANILOVIC N , BELL A T , et al . Membrane-electrode assembly design parameters for optimal CO 2 reduction [J ] . Electrochemical Science Advances , 2023 , 3 ( 1 ): e2100186 .
MARCOS-MADRAZO A , CASADO-COTERILIO C , IRABIEN A . Sustainable membrane-coated electrodes for CO 2 electroreduction to methanol in alkaline media [J ] . ChemElectroChem , 2019 , 6 ( 20 ): 5273 - 5282 .
ZHANG J , LUO W , ZUTTEL A . Crossover of liquid products from electrochemical CO 2 reduction through gas diffusion electrode and anion exchange membrane [J ] . Journal of Catalysis , 2020 , 385 : 140 - 145 .
YUAN L , ZENG S J , ZHANG X P , et al . Advances and challenges of electrolyzers for large-scale CO 2 electroreduction [J ] . Materials Reports: Energy , 2023 , 3 ( 1 ): 100177 .
XU D Z , LI K K , JIA B H , et al . Electrocatalytic CO 2 reduction towards industr ial applications [J ] . Carbon Energy , 2023 , 5 ( 1 ): 154 - 180 .
ZHANG Z , HUANG X , CHEN Z , et al . Membrane electrode assembly for electrocatalytic CO 2 reduction: Principle and application [J ] . Angewandte Chemie International Edition , 2023 , 135 ( 28 ): e202302789 .
KIM J Y , ZHU P , CHEN F Y , et al . Recovering carbon losses in CO 2 electrolysis using a solid electrolyte reactor [J ] . Nature Catalysis , 2022 , 5 ( 4 ): 288 - 299 .
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution