
浏览全部资源
扫码关注微信
1.四川大学 化学工程学院,四川 成都 610207
2.西南化工研究设计院有限公司,四川 成都 610225
Published:25 December 2024,
Received:14 May 2024,
Revised:27 May 2024,
移动端阅览
吕志文,宋文佳,苏敏等.Cu(Fe)/Pd-In/TiO2催化剂直接合成过氧化氢及原位活化降解四环素的性能研究[J].低碳化学与化工,2024,49(12):103-111.
LV Zhiwen,SONG Wenjia,SU Min,et al.Study on performances of Cu(Fe)/Pd-In/TiO2 catalysts for direct synthesis to hydrogen peroxide and in situ activation degradation of tetracycline[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):103-111.
吕志文,宋文佳,苏敏等.Cu(Fe)/Pd-In/TiO2催化剂直接合成过氧化氢及原位活化降解四环素的性能研究[J].低碳化学与化工,2024,49(12):103-111. DOI: 10.12434/j.issn.2097-2547.20240212.
LV Zhiwen,SONG Wenjia,SU Min,et al.Study on performances of Cu(Fe)/Pd-In/TiO2 catalysts for direct synthesis to hydrogen peroxide and in situ activation degradation of tetracycline[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):103-111. DOI: 10.12434/j.issn.2097-2547.20240212.
传统均相芬顿工艺处理废水中的四环素存在需要外加H
2
O
2
消耗大量铁离子、pH适用范围窄以及产生大量铁污泥等问题。通过设计
x
Cu(Fe)/Pd-In/TiO
2
系列双功能催化剂,构建了H
2
O
2
直接合成-芬顿(类芬顿)反应耦合体系,实现了H
2
O
2
高效合成及原位活化降解废水中四环素。采用XRD、TEM和EPR等表征技术对催化剂的晶体结构和微观形貌进行了分析,探究了pH值、四环素溶液初始质量浓度、催化剂质量浓度和共存离子等工艺条件对催化剂四环素去除性能的影响。结果表明,在温度为25 ℃、pH值为7、四环素溶液初始质量浓度为30 mg/L、催化剂质量浓度为0.2 g/L和无共存离子的最适宜反应条件下反应90 min后,2Fe/Pd-In/TiO
2
催化剂的四环素去除率最高(88.1%);在上述条件下,pH值为3时,1Cu/Pd-In/TiO
2
催化剂的四环素去除率最高(80.3%)。
x
Fe/Pd-In/TiO
2
催化剂的四环素去除能力整体强于
x
Cu/Pd-In/TiO
2
催化剂,这主要是由于Fe在催化剂表面分散更加均匀,且催化剂粒径相对更小。自由基捕获实验和EPR分析结果表明,·O
<math id="M1"><msubsup><mrow/><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71247571&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71247561&type=
1.10066664
和·OH为氧化降解四环素的主要活性氧物种,其中·O
<math id="M2"><msubsup><mrow/><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71247563&type=
3.89466691
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71247573&type=
1.10066664
起主导作用。
The traditional homogeneous Fenton process has some problems
such as requiring the addition of H
2
O
2
to consume a large amount of iron ions
the narrow pH applicatio
n range and the generation of a large amount of iron sludge. Through designing a series of
x
Cu(Fe)/Pd-In/TiO
2
bifunctional catalysts
a coupling H
2
O
2
direct synthesis-Fenton (Fenton like) reaction system was constructed to achieve efficient synthesis of H
2
O
2
and in-situ activation degradation of tetracycline in wastewater. XRD
TEM and EPR characterization techniques were used to analyze the crystal structure and microscopic topography of the catalysts
and the effects of pH value
initial mass concentration of tetracycline solution
mass concentration of catalysts and coexisting ions on the tetracycline removal performances of the catalysts were investigated. The results show that the tetracycline removal rate of 2Fe/Pd-In/TiO
2
catalyst is the highest (88.1%) after 90 min of reaction under the optimal reaction conditions of temperature of 25 ℃
pH value of 7
initial mass concentration of tetracycline solution of 30 mg/L
catalyst mass concentration of 0.2 g/L and no coexisting ions. Under the above conditions
the tetracycline removal rate of the 1Cu/Pd-In/TiO
2
catalyst is the highest (80.3%) at pH value of 3. The tetracycline removal ability of
x
Fe/Pd-In/TiO
2
catalyst is better than that of
x
Cu/Pd-In/TiO
2
catalyst. This is mainly due to the more uniform dispersion of Fe on the catalyst surfaces and the relatively small particle size of the catalysts. The results of free radical capture experiment and EPR analysis show that ·O
<math id="M3"><msubsup><mrow/><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71247584&type=
3.64066648
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71247586&type=
1.10066664
and ·OH are the main active oxygen species for oxidative degradation of tetracycline
in which ·O
<math id="M4"><msubsup><mrow/><mrow><mn mathvariant="normal">2</mn></mrow><mrow><mo>-</mo></mrow></msubsup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71247584&type=
3.64066648
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=71247586&type=
1.10066664
plays a leading role.
四环素去除芬顿反应活性氧物种去除效率
tetracycline removalFenton reactionactive oxygen speciesremoval efficiency
SAITOH T, SHIBATA K, FUJIMORI K, et al. Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions [J]. Separation and Purification Technology, 2017, 187: 76-83.
BENAVIDES J, BARRIAS P, PIRO N, et al. Reaction of tetracycline with biologically relevant chloramines [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 178: 171-180.
GOPAL G, ALEX S A, CHANDRASEKARAN N, et al. A review on tetracycline removal from aqueous systems by advanced treatment techniques [J]. RSC Advances, 2020, 10(45): 27081-27095.
CHEN X L, YANG Y Y, KE Y C, et al. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect [J]. Science of the Total Environment, 2022, 814: 152852.
BORGHI A A, PALMA M S A. Tetracycline: Production, waste treatment and environmental impact assessment [J]. Brazilian Journal of Pharmaceutical Sciences, 2014, 50(1): 25-40.
AHMAD F, ZHU D C, SUN J Z. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives [J]. Environmental Sciences Europe, 2021, 33(1): 1-17.
CHELLIAPAN S, WILBY T, SALLIS P J. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics [J]. Water Research, 2006, 40(3): 507-516.
OLIVER J P, GOOCH C A, LANSING S, et al. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems [J]. Journal of Dairy Science, 2020, 103(2): 1051-1071.
BOYD G R, REEMTSMA H, GRIMM D A, et al. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada [J]. Science of the Total Environment, 2003, 311(1/2/3): 135-149.
BACANLI M, BAŞARAN N. Importance of antibiotic residues in animal food [J]. Food and Chemical Toxicology, 2019, 125: 462-466.
ZHU T T, SU Z X, LAI W X, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology [J]. Science of the Total Environment, 2021, 776: 145906.
SCARIA J, ANUPAMA K V, NIDHEESH P V. Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management [J]. Science of the Total Environment, 2021, 771: 145291.
MANDAL T, MAITY S, DASGUPTA D, et al. Advanced oxidation process and biotreatment: Their roles in combined industrial wastewater treatment [J]. Desalination, 2010, 250(1): 87-94.
WANG J L, ZHUAN R. Degradation of antibiotics by advanced oxidation processes: An overview [J]. Science of the Total Environment, 2020, 701: 135023.
CHEN M, ZHU M X, ZHU Y, et al. Collision of emerging and traditional methods for antibiotics removal: Taking constructed wetlands and nanotechnology as an example [J]. NanoImpact, 2019, 15: 100175.
ZHU Y P, ZHU R L, XI Y F, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review [J]. Applied Catalysis B: Environmental, 2019, 255: 117739.
SOON A N, HAMEED B H. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process [J]. Desalination, 2011, 269(1/2/3): 1-16.
GANIYU S O, ZHOU M H, MARTíNEZ-HUITLE C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment [J]. Applied Catalysis B: Environmental, 2018, 235: 103-29.
LI X, ZHANG X, WANG S W, et al. Highly enhanced heterogeneous photo-Fenton process for tetracycline degradation by Fe/SCN Fenton-like catalyst [J]. Journal of Environmental Management, 2022, 312: 114856.
LI K, LI J J, ZHAO N, et al. Removal of tetracycline in sewage and dairy products with high-stable MOF [J]. Molecules, 2020, 25(6): 1312.
顾泉, 闫旭梅, 张薇, 等. 过氧化氢合成方法研究进展[J]. 化学教育(中英文), 2022, 43(10): 15-23.
GU Q, YAN X M, ZHANG W, et al. Research progress on synthetic methods of hydrogen peroxide [J]. Chemistry Education (English and Chinese), 2022, 43(10): 15-23.
杨晓茹, 邓明杨, 张晓昕. 蒽醌法生产过氧化氢用催化剂的研究进展[J]. 应用化工, 2023, 52(5): 1508-1518.
YANG X R, DENG M Y, ZHANG X X. Progress on hydrogenation catalyst for anthraquinone route in hydrogen peroxide production [J]. Applied Chemical Industry, 2023, 52(5): 1508-1518.
LIU S J, DENG Y B, FU L, et al. Understanding the role of boron on the interface modulation of the Pd/TiO2 catalyst for direct synthesis of H2O2 [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(10): 3264-3275.
HUYNH T T, HUANG W H, TSAI M C, et al. Synergistic hybrid support comprising TiO2-carbon and ordered PdNi alloy for direct hydrogen peroxide synthesis [J]. ACS Catalysis, 2021, 11(14): 8407-8416.
ZHANG Y, JIANG D B, WANG Y, et al. Core-shell structured magnetic γ-Fe2O3@PANI nanocomposites for enhanced As(V) adsorption [J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7554-7563.
HE D, SUN Y B, XIN L, et al. Aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2 [J]. Chemical Engineering Journal, 2014, 258: 18-25.
ZHAO Y P, GU X Y, GAO S X, et al. Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects [J]. Geoderma, 2012, 183/184: 12-18.
LIU H, HUO W C, ZHANG T C, et al. Photocatalytic removal of tetracycline by a Z-scheme heterojunction of bismuth oxyiodide/exfoliated g-C3N4: Performance, mechanism, and degradation pathway [J]. Materials Today Chemistry, 2022, 23: 100729.
CAMPOS‐MARTIN J M, BLANCO‐BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J]. Angewandte Chemie International Edition, 2006, 45(42): 6962-6984.
BLANCO-BRIEVA G, DESMEDT F, MIQUEL P, et al. Direct synthesis of hydrogen peroxide without the use of acids or halide promoters in dissolution [J]. Catalysis Science & Technology, 2020, 10(8): 2333-2336.
KHAN M H, BAE H, JUNG J Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway [J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 659-665.
DU C Y, ZHANG Z, TAN S Y, et al. Construction of Z-scheme g-C3N4/MnO2/GO ternary photocatalyst with enhanced photodegradation ability of tetracycline hydrochloride under visible light radiation [J]. Environmental Research, 2021, 200: 111427.
CAO J, YANG Z H, XIONG W P, et al. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis [J]. Chemical Engineering Journal, 2018, 353: 126-137.
ZHU Y P, ZHU R L, XI Y F, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review [J]. Applied Catalysis B: Environmental, 2019, 255: 117739.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution