浏览全部资源
扫码关注微信
1.昆明理工大学 环境科学与工程学院,云南 昆明 650031
2.昆明理工大学 冶金与化工行业废气资源化国家地方联合工程研究中心,云南 昆明 650031
Published:25 January 2025,
Received:20 April 2024,
Revised:17 July 2024,
移动端阅览
CHEN YUN, GONG HAICHUN, XU PEIFENG, et al. Synthesis of type A zeolite and A/X eutectic zeolite from waste clay brick and their CO2 adsorption performances. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 101-110.
CHEN YUN, GONG HAICHUN, XU PEIFENG, et al. Synthesis of type A zeolite and A/X eutectic zeolite from waste clay brick and their CO2 adsorption performances. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 101-110. DOI: 10.12434/j.issn.2097-2547.20240170.
固体废物资源化利用具有重要意义。以废粘土砖为原料,采用水热法合成了高CO
2
吸附性能的A型分子筛和A/X共晶分子筛。研究了碱灰比(质量比)、煅烧温度、晶化温度和晶化时间对废粘土砖基分子筛合成的影响,采用XRD、XRF、SEM、N
2
吸/脱附和FTIR等手段对分子筛进行了表征。结果表明,硅铝比(物质的量之比)固定为1,在碱灰比分别为0.6和1.6、煅烧温度为750 ℃、晶化温度为90 ℃和晶化时间为24 h的条件下,合成了最佳形貌的A型分子筛和A/X共晶分子筛。测试发现,二者比表面积分别为61.3 m
2
/g和326.7 m
2
/g,30 ℃、CO
2
气氛(CO
2
体积分数为10%)下CO
2
的吸附量分别为2.96 mmol/g和3.22 mmol/g,再生5次后的吸附量均能维持在初始吸附量的88%以上。通过吸附动力学模型和限速扩散模型,对两种分子筛的CO
2
吸附机理进行了研究,发现CO
2
分子由于内/外孔扩散以及分子间库仑引力而吸附在分子筛上,主要为物理吸附。本研究可为废粘土砖基分子筛的合成及其应用提供参考。
The utilization of solid waste resources is of important significance. Waste clay brick was used as the raw material to synthesize high CO
2
adsorption performance type A zeolite and A/X eutectic zeolite through the hydrothermal method. The effects of alkali to ash ratio (mass ratio)
calcination temperature
crystallization temperature and crystallization time on the synthesis of zeolite from waste clay brick were investigated. The synthesized zeolites were characterized using XRD
XRF
SEM
N
2
adsorption/desorption and FTIR. The results show that
with a fixed Si to Al ratio (mole ratio) of 1
the optimal morphology of type A zeolite and A/X eutectic zeolite is obtained under the conditions of an alkali to ash ratio of 0.6 and 1.6
respectively
calcination temperature of 750 ℃
crystallization temperature of 90 ℃ and crystallization time of 24 h. Testing reveals that their specific surface areas are 61.3 m²/g and 326.7 m²/g
and their CO
2
adsorption capacities are 2.96 mmol/g and 3.22 mmol/g at 30 ℃ under a CO
2
atmosphere (CO
2
volume fraction of 10%)
respectively. After five regeneration cycles
their adsorption capacities remain above 88% of the initial a
dsorption capacity. The CO
2
adsorption mechanism of the two zeolites was studied through adsorption kinetics and rate-limiting diffusion models. It is found that CO
2
molecules are adsorbed on the zeolites due to internal/external pore diffusion and intermolecular Coulomb forces
mainly through physical adsorption. This study can provide a reference for the synthesis and application of zeolites from waste clay brick.
废粘土砖A型分子筛A/X共晶分子筛CO2吸附
waste clay bricktype A zeoliteA/X eutectic zeoliteCO2 adsorption
ANDERSON T R, HAWKINS E, JONES P D. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models [J]. Endeavour, 2016, 40(3): 178-187.
LENSSEN N J L, SCHMIDT G A, HANSEN J E, et al. Improvements in the GISTEMP uncertainty model [J]. Journal of Geophysical Research: Atmospheres, 2019, 124(12): 6307-6326.
中国气象局气候变化中心. 中国温室气体公报[R]. 北京: 中国气象局, 2023.
Climate Change Center. China Meteorological Administration. China greenhouse gas bulletin [R]. Beijing: China Meteorological Administration, 2023.
DING M, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials [J]. Chemical Society Reviews, 2019, 48(10): 2783-2828.
SAYARI A. Catalysis by crystalline mesoporous molecular sieves [J]. Chemistry of Materials, 1996, 8(8): 1840-1852.
田晓丽. 碱液吸收法制取食用CO2节能降耗的技术分析[J]. 纯碱工业, 2004, (3): 21-23.
TIAN X L. Technical analysis of energy saving during preparation of edible carbon dioxide by using soda solution absorption [J]. Soda Industry, 2004, (3): 21-23.
GAO W L, LIANG S Y, WANG R J, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges [J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.
KOTHANDARAMAN J, GOEPPERT A, CZAUN M, et al. Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst [J]. Journal of the American Chemical Society, 2016, 138(3): 778-781.
WANG H, YIN Y, BAI J Q, et al. Multi-factor study of the effects of a trace amount of water vapor on low concentration CO2 capture by 5A zeolite particles [J]. RSC Advances, 2020, 10(11): 6503-6511.
FU D, DAVIS M E. Carbon dioxide capture with zeotype materials [J]. Chemical Society Reviews, 2022, 51(22): 9340-9370.
NAJAFI A M, SOLTANALI S, GHASSABZADEH H. Enhancing the CO2, CH4, and N2 adsorption and kinetic performance on FAU zeolites for CO2 capture from flue gas by metal incorporation technique [J]. Chemical Engineering Journal, 2023, 468: 143719.
WANG L, LIU Z, LI P, et al. Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process [J]. Chemical Engineering Journal, 2012, 197: 151-161.
ZHAO T, WEI Y J, WANG J W, et al. Microporous carbon coated zeolite particles for efficient carbon capture from wet flue gas [J]. Separation and Purification Technology, 2023, 317: 123762.
LI W T, HUANG T, HUANG W Z, et al. Preparation of nitrogen-doped activated carbon from bio-oil residue for efficient CO2 adsorption [J]. Industrial Crops and Products, 2024, 210: 118097.
ZHAO H Q, JIA J Y, YING J X, et al. CO2 selective adsorption over O2 on N-doped activated carbon: Experiment and quantum chemistry study [J]. Applied Surface Science, 2024, 656: 159727.
黄玉, 方梦祥, 余鹏, 等. 基于响应曲面法优化氮掺杂活性炭的制备和CO2吸附性能研究[J]. 煤炭转化, 2024, 47(1): 49-59.
HUANG Y, FANG M X, YU P, et al. Optimization of preparation of nitrogen-doped activated carbon and CO2 adsorption property based on response surface methodology [J]. Coal Conversion, 2024, 47(1): 49-59.
AVELLANEDA G L, DENOYEL R, BEURROIES I. CO2/H2O adsorption and co-adsorption on functionalized and modified mesoporous silicas [J]. Microporous and Mesoporous Materials, 2024, 363: 112801.
CHANAPATTHARAPOL K C, KRACHUAMRAM S, YOUNGME S. Study of CO2 adsorption on iron oxide doped MCM-41 [J]. Microporous and Mesoporous Materials, 2017, 245: 8-15.
LIN L, JU T Y, HAN S Y, et al. Comparison of characteristics and performance between PEI and DETA impregnated on SBA-15 for CO2 capture [J]. Separation and Purification Technology, 2023, 322: 124346.
TUMURBAATAR O, POPOVA M, MITOVA V, et al. Engineering of silica mesoporous materials for CO2 adsorption [J]. Materials, 2023, 16: 4179.
ZHAO M, YANG Y, GU X S. MOF based CO2 capture: Adsorption and membrane separation [J]. Inorganic Chemistry Communications, 2023, 152: 110722.
杜颖哲, 阳立波, 王欣鹏, 等. Zn掺杂对Ni-MOF-74的CO2/N2 吸附分离性能的影响[J]. 广西大学学报(自然科学版), 2023, 48(6): 1434-1445.
DU Y Z, YANG L B, WANG X P, et al. Effect of Zn doping on CO2/N2 adsorption separation performance of Ni-MOF-74 [J]. Journal of Guangxi University (Natural Science Edition), 2023, 48(6): 1434-1445.
张鑫琦, 张宸, 张舵咏, 等. 高选择性PEI@MOF-808吸附剂在潮湿烟气中的碳捕集性能研究[J]. 化工学报, 2023, 74(10): 4330-4342.
ZHANG X Q, ZHANG C, ZHANG D Y, et al. Study on the carbon capture performance of highly selective PEI@MOF-808 adsorbent in humid flue gas [J]. CIESC Journal, 2023, 74(10): 4330-4342.
LIU H, LIU B, LIN L C, et al. A hybrid absorption-adsorption method to efficiently capture carbon [J]. Nature Communications, 2014, 5(1): 5147.
SUTAR P N, JHA A, VAIDYA P D, et al. Secondary amines for CO2 capture: A kinetic investigation using N-ethylmonoethanolamine [J]. Chemical Engineering Journal, 2012, 207: 718-724.
SCHUMANN K, UNGER B, BRANDT A, et al. Investigation on the pore structure of binderless zeolite 13X shapes [J]. Microporous and Mesoporous Materials, 2012, 154: 119-123.
郭世民. 13X 分子筛去除废水中镍离子的性能研究[J]. 山西化工, 2011, 31(2): 75-77.
GUO S M. Removal of Ni2+ from wastewater by 13X molecular siever [J]. Shanxi Chemical Industry, 2011, 31(2): 75-77.
王春蓉. 沸石分子筛的性能与应用研究[J]. 化学与黏合, 2010, 32(4): 76-78.
WANG C R. Research on the performance and application of zeolite molecular sieves [J]. Chemistry and Adhesion, 2010, 32(4): 76-78.
张椿英, 陈南春, 张小虎, 等. A, X, P型分子筛的原位制备与结构控制[J]. 硅酸盐学报, 2014, 42(10): 1332-1336.
ZHANG C Y, CHEN N C, ZHANG X H, et al. In situ preparation and structure of zeolites A, X and P [J]. Journal of the Chinese Ceramic Society, 2014, 42(10): 1332-1336.
蒋文彬, 胥婷, 薛璐, 等. 凹凸棒石黏土合成13X沸石及吸附CO2性能研究[J]. 非金属矿, 2021, 44(5): 42-46.
JIANG W B, XU T, XUE L, et al. Research of synthesis of 13X zeolite from attapulgite clay and its CO2 adsorption performance [J]. Non-Metallic Mines, 2021, 44(5): 42-46.
WANG Y S, JIA H, CHEN P, et al. Synthesis of La and Ce modified X zeolite from rice husk ash for carbon dioxide capture [J]. Journal of Materials Research and Technology, 2020, 9(3): 4368-4378.
AQUINO T F D, ESTEVAM S T, VIOLA V O, et al. CO2 adsorption capacity of zeolites synthesized from coal fly ashes [J]. Fuel, 2020, 276: 118143.
CHEN M Z, LIN J T, WU S P, et al. Utilization of recycled brick powder as alternative filler in asphalt mixture [J]. Construction and Building Materials, 2011, 25(4): 1532-1536.
孔祥如. 树脂基固态胺吸附剂CO2捕集性能及机理[D]. 济南: 山东大学, 2020.
KONG X R. CO2 capture performance and mechanism of resin-based solid amine adsorbent [D]. Jinan: Shandong University, 2020.
WANG J L, GUO X. Adsorption kinetic models: Physical meanings, applications, and solving methods [J]. Journal of Hazardous Materials, 2020, 390: 122156.
WANG J L, GUO X. Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications [J]. Chemosphere, 2022, 309: 136732.
MOLINA A, POOLE C. A comparative study using two methods to produce zeolites from fly ash [J]. Minerals Engineering, 2004, 17(2): 167-173.
刘艳艳, 王慧华, 李雪, 等. 碱熔融-水热法利用粉煤灰合成沸石的研究[J]. 沈阳化工学院学报, 2008, 22(1): 43-46.
LIU Y Y, WANG H H, LI X, et al. Synthesis of zeolites from coal fly ash by alkaline melting and hydrothermal activation [J]. Journal of Shenyang Institute of Chemical Technology, 2008, 22(1): 43-46.
PURNOMO C W, SALIM C, HINODE H. Synthesis of pure Na-X and Na-A zeolite from bagasse fly ash [J]. Microporous and Mesoporous Materials, 2012, 162: 6-13.
赵世伟, 武波涛, 何捍卫. 水热反应法制备13X分子筛[J]. 粉末冶金材料科学与工程, 2010, 15(4): 399-403.
ZHAO S W, WU B T, HE H W, et al. Preparation technology of 13X molecular sieve [J]. Materials Science and Engineering of Powder Metallurgy, 2010, 15(4): 399-403.
ZAVAREH S, FARROKHZAD Z, DARVISHI F. Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water [J]. Ecotoxicology and Environmental Safety, 2018, 155: 1-8.
MURALI R S, ISMAIL A F, RAHMAN M A, et al. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations [J]. Separation and Purification Technology, 2014, 129: 1-8.
TANG W F, HAN J P, ZHANG S, et al. Synthesis of 4A zeolite containing la from kaolinite and its effect on the flammability of polypropylene [J]. Polymer Composites, 2017, 39(10): 3461-3471.
李沛轩. 粉煤灰制备NaA和NaX分子筛及其CO2吸附性能分析[D]. 北京: 华北电力大学, 2023.
LI P X. Analysis of NaA and NaX zeolite preparation from fly ash and their CO2 adsorption performance [D]. Beijing: North China Electric Power University, 2023.
AQUINO T F D, ESTEVAM S T, VIOLA V O, et al. CO2 adsorption capacity of zeolites synthesized from coal fly ashes [J]. Fuel, 2020, 276: 276.
ZENG Z T, YE S J, WU H P, et al. Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution [J]. Science of the Total Environment, 2019, 648: 206-217.
FAN C H, ZHANG Y C. Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks [J]. Journal of Geochemical Exploration, 2018, 188: 95-100.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution