浏览全部资源
扫码关注微信
1.中石化石油化工科学研究院有限公司,北京 100083
2.天津大学 化工学院,化学工程联合国家重点实验室,化学化工协同创新中心(天津),海河可持续化学转化实验室,天津市应用催化科学与工程重点实验室,天津 300350
3.天津大学浙江研究院(绍兴),浙江 绍兴 312300
Published:25 January 2025,
Received:10 April 2024,
Revised:09 May 2024,
移动端阅览
LIU JINXU, LV SHUAISHUAI, LI HONGWEI, et al. Research progress on bifunctional catalysts for direct synthesis of jet fuel from Fischer-Tropsch synthesis. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 13-19.
LIU JINXU, LV SHUAISHUAI, LI HONGWEI, et al. Research progress on bifunctional catalysts for direct synthesis of jet fuel from Fischer-Tropsch synthesis. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 13-19. DOI: 10.12434/j.issn.2097-2547.20240152.
费托合成可将生物质来源的合成气直接转化为航空煤油(简称“航煤”),是最具应用前景的生物航煤生产技术之一。受Anderson-Schulz-Flory(ASF)分布规律的限制,费托合成直接制航煤的产物选择性有限,如何提高航煤选择性仍是当前该领域面临的重要挑战。利用双功能催化剂可将费托合成活性中心与分子筛酸中心耦合,可实现CO加氢与裂解、异构化等二次反应的接力,进而达到有效调控特定馏分选择性的目的。介绍了双功能催化剂的作用机理,对比了现有报道中费托合成的反应性能,阐述了尺寸效应、孔结构调控、酸性质调控和助剂效应在不同催化体系中的调控策略及构效关系,并对双功能催化剂在费托合成直接制航煤中的应用进行了展望。
Fischer-Tropsch synthesis (FTS) can directly convert syngas derived from biomass into jet fuel
making it one of the most promising technologies for producing bio-based jet fuel. However
the selectivity of jet fuel in direct FTS is limited by the Anderson-Schulz-Flory (ASF) distribution law
posing a significant challenge in improving selectivity of jet fuel. Bifunctional catalysts
which couple FTS active centers with zeolite acid centers
enable the relay of CO hydrogenation with secondary reactions such as hydrocracking and isomerization
effectively controlling the selectivity for specific fractions. The mechanisms of bifunctional catalysts were introduced
and the reaction performances reported in existing studies were compared. The synthetic strategy and structure-performance relationship in different catalytic systems were emphasized
including the size effect
pore structure and acidity control of zeolites
as well as promoter effect. An outlook on the application of bifunctional catalysts for direct synthesis of jet fuel from FTS was provided.
费托合成航空煤油双功能催化剂
Fischer-Tropsch synthesisjet fuelbifunctional catalysts
RITCHIE H. What share of global CO2 emissions come from aviation? [EB/OL]. (2024-04-08)[2024-04-10]. https://ourworldindata.org/global-aviation-emissionshttps://ourworldindata.org/global-aviation-emissions.
BNP Paribas Bank. Decarbonisation pathways: The roadmap to sustainable aviation [EB/OL]. (2022-04-07)[2024-04-10]. https://cib.bnpparibas/decarbonisation-pathways-the-roadmap-to-sustainable-aviation/https://cib.bnpparibas/decarbonisation-pathways-the-roadmap-to-sustainable-aviation/.
KOURKOUMPAS D S, BON A, SAGANI A, et al. Life cycle assessment of novel thermochemical—Biochemical biomass-to-liquid pathways for sustainable aviation and maritime fuel production [J]. Bioresource technology, 2024, 393: 130115.
BRAUN M, GRIMME W, OESINGMANN K. Pathway to net zero: Reviewing sustainable aviation fuels, environmental impacts and pricing [J]. Journal of Air Transport Management, 2024, 117: 102580.
GOH B H H, CHONG C T, ONG H C, et al. Recent advancements in catalytic conversion pathways for synthetic jet fuel produced from bioresources [J]. Energy Conversion and Management, 2022, 251: 114974-114997.
LEE U, CAI H, OU L W, et al. Life cycle analysis of gasification and Fischer-Tropsch conversion of municipal solid waste for transportation fuel production [J]. Journal of Cleaner Production, 2023, 382: 135114.
FOX E B, LIU Z W, LIU Z T. Ultraclean fuels production and utilization for the twenty-first century: Advances toward sustainable transportation fuels [J]. Energy & Fuels, 2013, 27(11): 6335-6338.
DE KLERK A. Fischer-Tropsch refining [M]. Weinheim: WILEY-VCH, 2011.
VAN SANTEN R A, GHOURI M M, SHETTY S, et al. Structure sensitivity of the Fischer-Tropsch reaction; molecular kinetics simulations [J]. Catalysis Science & Technology, 2011, 1(6): 891-911.
VAN SANTEN R A, MARKVOORT A J, FILOT I A, et al. Mechanism and microkinetics of the Fischer-Tropsch reaction [J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17038-17063.
ZHOU W, CHENG K, KANG J C, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels [J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
FLORY P J. Molecular size distribution in linear condensation polymers [J]. Journal of the American Chemical Society, 1936, 58(10): 1877-1885.
SCHULZ G V. Über die kinetik der kettenpolymerisationen. V [J]. Zeitschrift für Physikalische Chemie, 1939, 43B(1): 25-46.
FRIEDEL R A, ANDERSON R B. Composition of synthetic liquid fuels. I. product distribution and analysis of C5~C8 paraffin isomers from cobalt catalyst [J]. Journal of the American Chemical Society, 1950, 72(3): 1212-1215.
ZHANG Q, YU J H, CORMA A. Applications of zeolites to C1 chemistry: Recent advances, challenges, and opportunities [J]. Advanced Materials, 2020, 32(44): 2002927.
PAN X L, JIAO F, MIAO D Y, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis [J]. Chemical Reviews, 2021, 121(11): 6588-6609.
SUN Q M, WANG N, YU J H. Advances in catalytic applications of zeolite-supported metal catalysts [J]. Advanced Materials, 2021, 33(51): 2104442.
LI H J, WANG L, XIAO F S. Importance of zeolite in multifunctional catalysts for syngas conversion [J]. Carbon Future, 2023, 1(1): 9200003.
庹杰, 李石擎, 徐浩, 等. 分子筛结构设计及酸性调控在合成气催化转化中的应用研究进展[J]. 燃料化学学报(中英文), 2023, 51(1): 1-17.
TUO J, LI S Q, XU H, et al. Research progress of structure design and acidity tuning of zeolites for the catalytic conversion of syngas [J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 1-17.
LIN T J, AN Y L, YU F, et al. Advancesin selectivity control for Fischer-Tropsch synthesis to fuels and chemicals with high carbon efficiency [J]. ACS Catalysis, 2022, 12(19): 12092-12112.
周伟, 成康, 张庆红, 等. 合成气转化中的接力催化[J]. 科学通报, 2021, 66(10): 1157-1169.
ZHOU W, CHENG K, ZHANG Q H, et al. Relay catalysis in the conversion of syngas [J]. 2021, 66(10): 1157-1169.
李宇萍, 王铁军, 马隆龙, 等. Hβ改性Co/SiO2对费托合成航空燃油类烃的影响[J]. 无机材料学报, 2014, 29(6): 599-604.
LI Y P, WANG T J, MA L L, et al. Hβ modified Co/SiO2 catalysts for Fischer-Tropsch synthesis of jet fuel-range hydrocarbons [J]. Journal of Inorganic Materials, 2014, 29(6): 599-604.
卓叶欣. 稀土金属改性催化剂选择性制取液体烃类燃料的研究[D]. 杭州: 浙江大学, 2019.
ZHUO Y X. Research on selective production of liquid hydrocarbon fuels over rare-earth metal modified catalysts[D]. Hangzhou: Zhejiang University, 2019.
YANG M, ZHU L J, ZHUO Y X, et al. Selective Fischer-Tropsch synthesis for jet fuel production over Y3+ modified Co/H-β catalysts [J]. Sustainable Energy & Fuels, 2020, 4(7): 3528-3536.
ZHAI Y L, ZHANG W L, LU X G, et al. Preparation of hierarchical Co/Beta catalyst and its application in hydrogenation of CO to aviation kerosene [J]. Crystals, 2023, 13(7): 1053-1066.
BOYMANS E, NIJBACKER T, SLORT D, et al. Jet fuel synthesis from syngas using bifunctional cobalt-based catalysts [J]. Catalysts, 2022, 12(3): 288-299.
李宇萍, 陈伦刚, 王铁军, 等. Ru助剂对Co/SiO2/HZSM-5催化剂合成航空燃油类烃的影响[J]. 燃料化学学报, 2014, 42(6): 727-732.
LI Y P, CHEN L G, WANG T J, et al. Ru modified Co/SiO2/HZSM-5 catalysts for jet fuel-range hydrocarbons synthesis [J]. Journal of Fuel Chemistry and Technology, 2014, 42(6): 727-732.
WANG Z W, WANG H, YANG C G, et al. Hierarchical ZSM-5 supported CoMn catalyst for the production of middle distillate from syngas [J]. Industrial & Engineering Chemistry Research, 2021, 60(16): 5783-5791.
WANG H, WANG Z W, WANG S, et al. The effect of the particle size on Fischer-Tropsch synthesis for ZSM-5 zeolite supported cobalt-based catalysts [J]. Chemical Communications, 2021, 57(99): 13522-13525.
LI J, HE Y L, TAN L, et al. Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology [J]. Nature Catalysis, 2018, 1(10): 787-793.
CAI Y, XU X F, WANG H, et al. Bifunctional Co/Al-SBA-15 catalyst with tunable acidity for selective production of aviation fuel [J]. Industrial & Engineering Chemistry Research, 2018, 57(11): 3844-3854.
ROMMENS K T, SAEYS M. Molecular views on Fischer-Tropsch synthesis [J]. Chemical Reviews, 2023, 123(9): 5798-5858.
VAN ETTEN M P C, DE LAAT M E, HENSEN E J M, et al. Unraveling the role of metal-support interactions on the structure sensitivity of Fische-Tropsch synthesis [J]. Journal of Physical Chemistry C, 2023, 127(31): 15148-15156.
FISCHER N, CLAPHAM B, FELTES T, et al. Cobalt-based Fischer-Tropsch activity and selectivity as a function of crystallite size and water partial pressure [J]. ACS Catalysis, 2015, 5(1): 113-121.
CHENG Q P, TIAN Y, LYU S S, et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis [J]. Nature Communications, 2018, 9(1): 3250-3258.
KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J]. Chemical Reviews, 2007, 107(5): 1692-1744.
ZHANG Q H, CHENG K, KANG J C, et al. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity [J]. ChemSusChem, 2014, 7(5): 1251-1264.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution