浏览全部资源
扫码关注微信
华东理工大学 化工学院 大型工业反应器工程教育部工程研究中心 化学工程联合国家重点实验室, 上海 200237
Published:25 January 2025,
Received:03 April 2024,
Revised:23 April 2024,
移动端阅览
ZHANG XIANGNAN, MA HONGFANG, QIAN WEIXIN, et al. Application of bifunctional Mn-based catalysts in cycloaddition reaction of carbon dioxide and epoxides. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 20-26.
ZHANG XIANGNAN, MA HONGFANG, QIAN WEIXIN, et al. Application of bifunctional Mn-based catalysts in cycloaddition reaction of carbon dioxide and epoxides. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 20-26. DOI: 10.12434/j.issn.2097-2547.20240139.
二氧化碳(CO
2
)和环氧化物环加成反应是目前合成环状碳酸酯的有效方法之一。催化剂对活化该反应中的CO
2
和环氧化物具有重要意义。以2
2’-联吡啶及其衍生物为配体,Mn(CO)
5
Br为金属源,乙醚为溶剂制备了一系列双功能Mn基催化剂L
n
Mn(CO)
3
Br(
n
= 1~6)。通过
1
H NMR、
13
C NMR、HR-MS和FT-IR等对L
n
Mn(CO)
3
Br的化学结构、相对分子质量和化学基团等进行了表征。研究了L
n
Mn(CO)
3
Br在CO
2
和环氧氯丙烷环加成反应中的催化性能,及L
1
Mn(CO)
3
Br对一系列环氧化物底物的适应性。结果表明,L
n
Mn(CO)
3
Br中给电子基团(甲氧基、叔丁基和甲基)的给电子性能和吡啶环上甲基的位置均对其催化性能有影响;对于CO
2
和环氧氯丙烷环加成反应,在L
1
Mn(CO)
3
Br投加量(物质的量分数)为0.05%、反应温度为125 ℃和反应压力为3.0 MPa的条件下反应1 h,L
1
Mn(CO)
3
Br的环氧氯丙烷转化率和催化剂转换频率分别为42%和840 h
-1
;L
1
Mn(CO)
3
Br对多种环氧化物作底物的环加成反应具有适应性,且底物的空间位阻效应对其催化性能有较大影响。
The cycloaddition reaction of carbon dioxide (CO
2
) and epoxides is an effective method to synthesize cyclic carbonates. Catalysts are important for the activation of CO
2
and epoxides in the reaction. A series of bifunctional Mn-based catalysts L
n
Mn(CO)
3
Br (
n
= 1~6) were prepared by 2
2’-bipyridine with its derivatives as the ligands
Mn(CO)
5
Br as the metal source and ethyl ether as the solvent. The chemical structures
molecular weights and chemical groups of L
n
Mn(CO)
3
Br were characterized by
1
H NMR
13
C NMR
HR-MS and FT-IR
etc. The catalytic performances of L
n
Mn(CO)
3
Br in the cycloaddition reaction of CO
2
and epichlorohydrin and the adaptability of L
1
Mn(CO)
3
Br to a series of epoxide substrates were studied. The results show that the electron donating properties of electron donating groups (methoxy group
tertiary butyl and methyl group) in L
n
Mn(CO)
3
Br and the positions of methyl group on the pyridine ring have influences on their catalytic performances. For the cycloaddition reaction of CO
2
and epiglorohydrin
under the conditions of L
1
Mn(CO)
3
Br dosage (mole fraction) of 0.05%
reaction temperature of 125 ℃ and reaction pressure of 3.0 MPa for 1 h
the epiglorohydrin conversion rate and catalyst turnover frequency of L
1
Mn(CO)
3
Br are 42% and 840 h
-1
respectively. L
1
Mn(CO)
3
Br has adaptability to the cycloaddition reaction of several epoxides. And the steric hindrance effects of the substrates have great influences on catalytic performance of L
1
Mn(CO
3
)Br.
环状碳酸酯双功能Mn基催化剂二氧化碳环氧化物环加成反应
cyclic carbonatesbifunctional Mn-based catalystscarbon dioxideepoxidescycloaddition reaction
PESCARMONA P P. Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends [J]. Current Opinion in Green and Sustainable Chemistry, 2021, 29: 100457.
GAO F, BAI R X, FERLIN F, et al. Replacement strategies for non-green dipolar aprotic solvents [J]. Green Chemistry, 2022, 22: 6240-6257.
KAITWADE N. Ethylene carbonate market analysis (2022 to 2032) [R]. Pune: Future Market Insights, 2018.
NAGRALE P. Propylene carbonate market research report information by from (pellet, aqueous, film, others), by application (solvent, binders and adhesives, coatings, lithium-ion batteries, textile dyeing, others), and by region (North America, Europe, Asia-Pacific, and rest of the world)—Market forecast till 2030 [R]. Pune: Market Research Future, 2021.
YU W, MAYNARD E, CHIARADIA V, et al. Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials [J]. Chemical Reviews, 2021, 121(18): 10865-10907.
KAMPHUIS A J, PICCHIONI F, PESCARMONA P P. CO2-fixation into cyclic and polymeric carbonates: Principles and applications [J]. Green Chemistry, 2019, 21: 406-448.
ZOU B, HU C W. Halogen-free processes for organic carbonate synthesis from CO2 [J]. Current Opinion in Green and Sustainable Chemistry, 2017, 3: 11-16.
TYAGI P, SINGH D, MALIK N, et al. Metal catalyst for CO2 capture and conversion into cyclic carbonate: Progress and challenges [J]. Materials Today, 2023, 65: 133-165.
ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: Catalyst design and mechanistic studies [J]. Catalysis Science & Technology, 2017, 7: 2651-2684.
BURKART M D, HAZARI N, TWAY C L, et al. Opportunities and challenges for catalysis in carbon dioxide utilization [J]. ACS Catalysis, 2019, 9(9): 7937-7956.
WU Y F, SONG X H, XU S Q, et al. Chemical fixation of CO2 into cyclic carbonates catalyzed by bimetal mixed MOFs: The role of the interaction between Co and Zn [J]. Dalton Transactions, 2020, 49: 312-321.
WU Y F, SHI S B, SU X X, et al. Experimental and computational studies of Zn(Ⅱ) complexes structured with Schiff base ligands as the efficient catalysts for chemical fixation of CO2 into cyclic carbonates [J]. Molecular Catalysis, 2021, 515: 111894.
WU Y F, XIAO Y, YUAN H, et al. Imidazolium ionic liquid functionalized UiO-66-NH2 as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates [J]. Microporous and Mesoporous Materials, 2021, 310: 110578.
朱雪冰, 李红, 杨豆等. 金属配合物化学固定二氧化碳的研究进展[J]. 化工技术与开发, 2023, 52(9): 20-25.
ZHU X B, LI H, YANG D, et al. Research progress of chemical fixation of carbon dioxide by metal complexes [J]. Technology & Development of Chemical Industry, 2023, 52(9): 20-25.
WU Y F, SONG X H, ZHANG J H, et al. Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies [J]. Chemical Engineering Science, 2019, 201: 288-297.
刘桂杰, 付正强, 陈飞, 等. N-杂环卡宾-吡啶锰配合物/四丁基碘化铵催化CO2和环氧化物合成环状碳酸酯[J]. 有机化学, 2023, 43(2): 629-635.
LIU G J, FU Z Q, CHEN F, et al. N-heterocyclic carbene-pyridine manganese complex/tetrabutylammonium iodide catalyzed synthesis of cyclic carbonate from CO2 and epoxide[J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 629-635.
BALAS M, BEAUDOIN S, PROUST A, et al. Advantages of covalent immobilization of metal-Salophen on amino-functionalized mesoporous silica in terms of recycling and catalytic activity for CO2 cycloaddition onto epoxides [J]. European Journal of Inorganic Chemistry, 2021, 16: 1581-1591.
MILANI J L S, MEIRELES A M, CABRAL B N, et al. Highly active Mn(Ⅲ) meso-tetrakis(2,3-dichlorophenyl)porphyrin catalysts for the cycloaddition of CO2 with epoxides [J]. Journal of CO2 Utilization, 2019, 30: 100-106.
FENG C, QIAO S S, GUO Y, et al. Adenine-assisted synthesis of functionalized F-Mn-MOF-74 as an efficient catalyst with enhanced catalytic activity for the cycloaddition of carbon dioxide [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597: 124781.
MILANI J L S, MEIRELES A M, BEZERRA W A, et al. MnⅢ porphyrins: Catalytic coupling of epoxides with CO2 under mild conditions and mechanistic considerations [J]. ChemCatChem, 2019, 11(17): 4393-4402.
CUESTA-ALUJA L, CASTILLA J, MASDEU-BULTÓ A M, et al. Halogenated meso-phenyl Mn(Ⅲ) porphyrins as highly efficient catalysts for the synthesis of polycarbonates and cyclic carbonates using carbon dioxide and epoxides [J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 489-494.
CABRAL B N, MILANI J L S, MEIRELES A M, et al. Mn(Ⅲ)-porphyrin catalysts for the cycloaddition of CO2 with epoxides at atmospheric pressure: Effects of Lewis acidity and ligand structure [J]. New Journal of Chemistry, 2021, 45: 1934-1943.
JUTZ F, GRUNWALDT J D, BAIKER A. Mn(Ⅲ)(salen)-catalyzed synthesis of cyclic carbonates from propylene and styrene oxide in "supercritical" CO2 [J]. Journal of Molecular Catalysis A: Chemical, 2008, 279: 94-103.
WANG D, GAO Z Y, DUAN S J, et al. A series of bifunctional metalloporphyrins as efficient catalysts for cycloaddition of CO2 with epoxides [J]. Applied Organometallic Chemistry, 2023, 37: 7121.
ÜSTÜN E, ÖZGÜR A, COŞKUN K A, et al. CO-releasing properties and anticancer activities of manganese complexes with imidazole/benzimidazole ligands [J]. Journal of Coordination Chemistry, 2016, 69(22): 1-20.
TIGNOR S E, KUO H Y, LEE T S, et al. Manganese-based catalysts with varying ligand substituents for the electrochemical reduction of CO2 to CO [J]. Organometallics, 2019, 38: 1292-1299.
HENRY L, SCHNEIDER C, MÜTZEL B, et al. Amino acid bioconjugation via iClick reaction of an oxanorbornadiene-masked alkyne with a MnⅠ(bpy)(CO)3-coordinated azide [J]. Chemical Communications, 2014, 50(99): 15692-15695.
KURTZ D A, DHAKAL B, MCDONALD L T, et al. Inter-ligand intramolecular through-space anisotropic shielding in a series of manganese carbonyl phosphorous compounds [J]. Dalton Transactions, 2019, 48: 14926-24935.
SPALL S J P, KEANE T, TORY J, et al. Manganese tricarbonyl complexes with asymmetric 2-iminopyridine ligands: Toward decoupling steric and electronic factors in electrocatalytic CO2 reduction [J]. Inorganic Chemistry, 2016, 55(24): 12568-12582.
ÜSTÜN E, AYVAZ M Ç, ÇELEBI M S, et al. Structure, CO-releasing property, electrochemistry, DFT calculation, and antioxidant activity of benzimidazole derivative substituted [Mn(CO)3(bpy)L]PF6 type novel manganese complexes [J]. Inorganica Chimica Acta, 2016, 450: 182-189.
HENKE W C, OTOLSKI C J, MOORE W N G, et al. Ultrafast spectroscopy of [Mn(CO)3] complexes: Tuning the kinetics of light-driven CO release and solvent binding [J]. Inorganic Chemistry, 2020, 59(4): 2178-2187.
CHEN F, TAO S, LIU N, et al. N-heterocyclic carbene-nitrogen molybdenum catalysts for utilization of CO2 [J]. Polyhedron, 2021, 196: 114990.
CASTRO-OSMA J A, LAMB K J, NORTH M. Cr(Salophen) complex catalyzed cyclic carbonate synthesis at ambient temperature and pressure [J]. ACS Catalysis, 2016, 6(8): 5012-5025.
LI J W, TAO S, CHEN F, et al. N-heterocyclic carbene-pyridine ligand coordinated Mo(Ⅱ) complexes catalyzed synthesis of cyclic carbonates from carbon dioxide and epoxides [J]. Journal of CO2 Utilization, 2023, 69: 102384.
KIM Y, RYU S, CHO W, et al. Halide-free and bifunctional one-component catalysts for the coupling of carbon dioxide and epoxides [J]. Inorganic Chemistry, 2019, 58(9): 5922-5931.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution