浏览全部资源
扫码关注微信
1.华北电力大学(保定) 环境科学与工程系 河北省燃煤电站烟气多污染物协同控制重点实验室, 河北 保定 071003
2.华北电力大学 环境科学与工程学院 资源与环境系统优化教育部重点实验室,北京 102206
3.华北电力大学(保定) 控制与计算机工程学院,河北 保定 071003
Published:25 January 2025,
Received:29 March 2024,
Revised:29 April 2024,
移动端阅览
LIU JINGWEN, SUN LELE, LIU JIAN, et al. Research progress on catalytic desorption of organic amine CO2 absorption liquids. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 120-131.
LIU JINGWEN, SUN LELE, LIU JIAN, et al. Research progress on catalytic desorption of organic amine CO2 absorption liquids. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 120-131. DOI: 10.12434/j.issn.2097-2547.20240127.
有机胺CO
2
捕集技术由于高再生能耗限制了其大范围工业应用,而有机胺CO
2
吸收液催化解吸技术可通过降低显热、汽化热和反应热,实现有机胺高效再生及高纯CO
2
低温解吸。综述了有机胺CO
2
吸收液催化解吸技术的研究进展,分析了有机胺CO
2
吸收液解吸催化剂的特点与催化剂作用下有机胺CO
2
吸收液催化解吸的机理,并对有机胺CO
2
吸收液催化解吸技术的未来发展进行了展望。
The wide range of industrial applications of organic amine CO
2
capture technology is limited due to its high renewable energy consumption
while organic amine CO
2
absorption liquids catalytic desorption technology can achieve efficient organic amine regeneration and high purity CO
2
desorption at low temperature by reducing sensible heat
vaporization heat and reaction heat. The research progress on technology of catalytic desorption of organic amine CO
2
absorption liquids was reviewed.The characteristics of catalysts for desorption of organic amine CO
2
absorption liquids and the mechanism of catalytic desorption of organic amine CO
2
absorption liquids under the action of catalysts were analyzed
and the future development of catalytic desorption of organic amine CO
2
absorption liquids was prospected.
CO2捕集有机胺再生催化解吸
CO2 captureorganic amineregenerationcatalytic desorption
相宏伟, 杨勇, 李永旺. 煤炭间接液化: 从基础到工业化[J]. 中国科学: 化学, 2014, 44(12): 1876-1892.
XIANG H W, YANG Y, LI Y W. Indirect coal-to-liquids technology from fundamental research to commercialization [J]. SCIENTIA SINICA (Chimica), 2014, 44(12): 1876-1892.
刘大李, 王聪, 刘新伟, 等. 用于二氧化碳捕集的化学吸收剂研究进展[J]. 低碳化学与化工, 2024, 49(1): 94-104+112.
LIU D L, WANG C, LIU X W, et al. Research advances in chemical absorbents for carbon dioxide capture [J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(1): 94-104+112.
于小荣, 吉仁静, 杨欢, 等. 燃烧后二氧化碳捕集材料的研究进展[J]. 低碳化学与化工, 2023, 48(5): 82-94.
YU X R, JI R J, YANG H, et al. Research progress of post-combustion carbon dioxide capture materials [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(5): 82-94.
DUTCHER B, FAN M H, RUSSELL A G. Amine-based CO2 capture technology development from the beginning of 2013—A review [J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2137-2148.
GECIM G, OUYANG Y, ROY S, et al. Process intensification of CO2 desorption [J]. Industrial & Engineering Chemistry Research, 2023, 62(45): 19177-19196.
OEXMANN J, KATHER A. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents [J]. International Journal of Greenhouse Gas Control, 2010, 4(1): 36-43.
ZHANG S H, SHEN Y, WANG L D, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges [J]. Applied Energy, 2019, 239: 876-897.
AGHEL B, JANATI S, WONGWISES S, et al. Review on CO2 capture by blended amine solutions [J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715.
LI T Y, KEENER T C. A review: Desorption of CO2 from rich solutions in chemical absorption processes [J]. International Journal of Greenhouse Gas Control, 2016, 51: 290-304.
VADILLO J M, G MEZ-COMA L, GAREA A, et al. Hollow fiber membrane contactors in CO2 desorption: A review [J]. Energy & Fuels, 2021, 35(1): 111-136.
LIU M S, HOHENSHIL A, GADIKOTA G. Integrated CO2 capture and removal via carbon mineralization with inherent regeneration of aqueous solvents [J]. Energy & Fuels, 2021, 35(9): 8051-8068.
WU X M, FAN H F, SHARIF M, et al. Electrochemically-mediated amine regeneration of CO2 capture: From electrochemical mechanism to bench-scale visualization study [J]. Applied Energy, 2021, 302: 117554.
HOU L K, LIU Y Y, WU K J, et al. Electrochemical acid-catalyzed desorption and regeneration of mdea CO2-rich liquid by hydroquinone derivatives (tiron) [J]. Energy & Fuels, 2022, 36(9): 4871-4879.
SANTHOSH KUMAR M, BALRAJ A, NAGARAJAN R, et al. Intensification of sono-assisted CO2 stripping/carbon-rich solvent regeneration by Fe2O3 hydrophobic micronized particles [J]. Industrial & Engineering Chemistry Research, 2023, 62(18): 7072-7079.
SRISANG W, POURYOUSEFI F, OSEI P A, et al. Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture [J]. Chemical Engineering Science, 2017, 170: 48-57.
席振峰. 协同效应: 双金属有机化合物及Lewis酸促进的金属有机化学反应[J]. 中国科学: 化学, 2009, 39(10): 1115-1124.
XI Z F. Cooperative effect: Organo-bi-metallic compounds and Lewis acid-mediated organometallic chemistry [J]. SCIENTIA SINICA (Chimica), 2009, 39(10): 1115-1124.
CHENG C H, LI K K, YU H, et al. Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions [J]. Applied Energy, 2018, 211: 1030-1038.
LI K K, VAN DER POEL P, CONWAY W, et al. Mechanism investigation of advanced metal-ion-mediated amine regeneration: A novel pathway to reducing CO2 reaction enthalpy in amine-based CO2 capture [J]. Environmental Science & Technology, 2018, 52(24): 14538-14546.
IDEM R, SHI H C, GELOWITZ D, et al. Catalytic method and apparatus for separating a gaseous component from an incoming gas stream: US20130108532 [P]. 2013-05-02.
SHI H C, NAAMI A, IDEM R, et al. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents [J]. International Journal of Greenhouse Gas Control, 2014, 26: 39-50.
BHATTI U H, SHAH A K, KIM J N, et al. Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5862-5868.
BHATTI U H, NAM S, PARK S, et al. Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12079-12087.
BHATTI U H, SIVANESAN D, LIM D H, et al. Metal oxide catalyst-aided solvent regeneration: A promising method to economize post-combustion CO2 capture process [J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 150-157.
LAI Q H, TOAN S, ASSIRI M A, et al. Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture [J]. Nature Communications, 2018, 9(1): 2672.
ZHANG X W, ZHANG X, LIU H L, et al. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts [J]. Applied Energy, 2017, 202: 673-684.
GENG Z B, YANG Y, WANG Y X, et al. Catalytic regeneration of amine-based absorbents for CO2 capture: The effect of acidic sites and accessibility [J]. Separation and Purification Technology, 2023, 327: 124889.
ALIVAND M S, MAZAHERI O, WU Y, et al. Water-dispersible nanocatalysts with engineered structures: The new generation of nanomaterials for energy-efficient CO2 capture [J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57294-57305.
ZHANG X W, ZHANG R, LIU H L, et al. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts [J]. Applied Energy, 2018, 218: 417-429.
BHATTI U H, SHAH A K, HUSSAIN A, et al. Catalytic activity of facilely synthesized mesoporous HZSM-5 catalysts for optimizing the CO2 desorption rate from CO2-rich amine solutions [J]. Chemical Engineering Journal, 2020, 389: 123439.
SUN Q, GAO H X, SEMA T, et al. Enhanced CO2 desorption rate for rich amine solution regeneration over hierarchical HZSM-5 catalyst [J]. Chemical Engineering Journal, 2023, 469: 143871.
ZHANG X W, LIU H L, LIANG Z W, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts [J]. Applied Energy, 2018, 229: 562-576.
GAO H X, HUANG Y F, ZHANG X W, et al. Catalytic performance and mechanism of SO42-/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution [J]. Applied Energy, 2020, 259: 114179.
ZHANG X W, ZHU Z Q, SUN X Y, et al. Reducing energy penalty of CO2 capture using Fe promoted SO42-/ZrO2/MCM-41 catalyst [J]. Environmental Science & Technology, 2019, 53(10): 6094-6102.
ZHANG X W, HUANG Y F, YANG J, et al. Amine-based CO2 capture aided by acid-basic bifunctional catalyst: Advancement of amine regeneration using metal modified MCM-41 [J]. Chemical Engineering Journal, 2020, 383: 123077.
XING L, WEI K X, LI Q W, et al. One-step synthesized SO42-/ZrO2-HZSM-5 solid acid catalyst for carbamate decomposition in CO2 capture [J]. Environmental Science & Technology, 2020, 54(21): 13944-13952.
LI M Y, XING L, XU Z F, et al. Embedded Mo/Mn atomic regulation for durable acidity-reinforced HZSM-5 catalyst toward energy-efficient amine regeneration [J]. Environmental Science & Technology, 2023, 57(41): 15465-15474.
MUMPTON F A. La roca magica: Uses of natural zeolites in agriculture and industry [J]. Proceedings of the National Academy of Sciences, 1999, 96(7): 3463-3470.
BHATTI U, KAZMI W, MIN G, et al. Facilely synthesized M-montmorillonite (M = Cr, Fe, and Co) as efficient catalysts for enhancing CO2 desorption from amine solution [J]. Industrial & Engineering Chemistry Research, 2021, 60.
BHATTI U H, KAZMI W W, MUHAMMAD H A, et al. Practical and inexpensive acid-activated montmorillonite catalysts for energy-efficient CO2 capture [J]. Green Chemistry, 2020, 22(19): 6328-6333.
TAN Z, ZHANG S S, YUE X W, et al. Attapulgite as a cost-effective catalyst for low-energy consumption amine-based CO2 capture [J]. Separation and Purification Technology, 2022, 298: 121577.
TAN Z, ZHANG S S, ZHAO F F, et al. SnO2/ATP catalyst enabling energy-efficient and green amine-based CO2 capture [J]. Chemical Engineering Journal, 2023, 453: 139801.
TAN Z, ZHANG X W, ZHANG S S, et al. Enhancing CO2 desorption rate in rich MEA solutions by metal-modified attapulgite catalyst [J]. Separation and Purification Technology, 2024, 330: 125513.
ZHANG R, LI Y F, ZHANG Y M, et al. Energy-saving effect of low-cost and environmentally friendly sepiolite as an efficient catalyst carrier for CO2 capture [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(11): 4353-4363.
BAIRQ Z A S, GAO H X, MURSHED F A M, et al. Modified heterogeneous catalyst-aided regeneration of CO2 capture amines: A promising perspective for a drastic reduction in energy consumption [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9526-9536.
BHATTI A H, WARIS M, KAZMI W W, et al. Acid-treated activated carbon as simple and inexpensive catalyst to accelerate CO2 desorption from aqueous amine solution [J]. Carbon Capture Science & Technology, 2023, 8: 100131.
GAO Y Y, HE X, MAO K K, et al. Catalytic CO2 capture via ultrasonically activating dually functionalized carbon nanotubes [J]. ACS Nano, 2023, 17(9): 8345-8354.
LI X J, XU Q, LIU Z S, et al. Nonacid carbon materials as catalysts for monoethanolamine energy-efficient regeneration [J]. Environmental Science & Technology, 2023, 57(27): 9975-9983.
BARBARO P, LIGUORI F. Ion exchange resins: Catalyst recovery and recycle [J]. Chemical Reviews, 2009, 109(2): 515-529.
SUN Q, XIONG J, GAO H X, et al. Evaluation of hybrid amines and alcohol solvent with ion-exchange resin catalysts for energy-efficient CO2 capture [J]. Green Chemistry, 2023, 25(12): 4647-4655.
LI Y C, CHEN Z, YUAN B L, et al. Synergistic promotion for CO2 absorption and solvent regeneration by fine waste red mud particles on in amine-based carbon capture: Performance and mechanism [J]. Separation and Purification Technology, 2023, 304: 122380.
CHEN L L, LU S J, ZHANG L, et al. Solid waste of fly ash toward energy-efficient CO2 capture [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(22): 8281-8293.
CUI W R, ZHANG C R, XU R H, et al. Rational design of covalent organic frameworks as a groundbreaking uranium capture platform through three synergistic mechanisms [J]. Applied Catalysis B: Environmental, 2021, 294: 120250.
KITAGAWA S. Metal-organic frameworks (MOFs) [J]. Chemical Society Reviews, 2014, 43(16): 5415-5418.
WEI K X, XING L, LI Y C, et al. Heteropolyacid modified Cerium-based MOFs catalyst for amine solution regeneration in CO2 capture [J]. Separation and Purification Technology, 2022, 293: 121144.
XING L, WEI K X, LI Y C, et al. TiO2 coating strategy for robust catalysis of the metal-organic framework toward energy-efficient CO2 capture [J]. Environmental Science & Technology, 2021, 55(16): 11216-11224.
LI Y C, CHEN Z, ZHAN G X, et al. Inducing efficient proton transfer through Fe/Ni@COF to promote amine-based solvent regeneration for achieving low-cost capture of CO2 from industrial flue gas [J]. Separation and Purification Technology, 2022, 298: 121676.
ALIVAND M S, MAZAHERI O, WU Y, et al. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture [J]. Nature Communications, 2022, 13(1): 1249.
XING L, LI M, LI M Y, et al. MOF-derived robust and synergetic acid sites inducing C—N bond disruption for energy-efficient CO2 desorption [J]. Environmental Science & Technology, 2022, 56(24): 17936-17945.
HE X, GAO Y Y, SHI Y L, et al. [EMmim][NTf2]—A novel ionic liquid (IL) in catalytic CO2 capture and ILs’ applications [J]. Advanced Science, 2023, 10(3): 2205352.
SUN Q, XIONG J, GAO H X, et al. Energy-efficient regeneration of amine-based solvent with environmentally friendly ionic liquid catalysts for CO2 capture [J]. Chemical Engineering Science, 2024, 283: 119380.
CAPLOW M. Kinetics of carbamate formation and breakdown [J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803.
DANCKWERTS P V. The reaction of CO2 with ethanolamines [J]. Chemical Engineering Science, 1979, 34(4): 443-446.
DA SILVA E F, SVENDSEN H F. Ab initio study of the reaction of carbamate formation from CO2 and alkanolamines [J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3413-3418.
ARSTAD B, BLOM R, SWANG O. CO2 absorption in aqueous solutions of alkanolamines: Mechanistic insight from quantum chemical calculations [J]. The Journal of Physical Chemistry A, 2007, 111(7): 1222-1228.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution