
浏览全部资源
扫码关注微信
1.郑州大学 炼焦煤资源绿色开发国家重点实验室,河南 郑州 450001
2.郑州大学 化工学院 先进功能材料制造教育部工程研究中心,河南 郑州 450001
Published:25 December 2024,
Received:28 March 2024,
Revised:11 April 2024,
移动端阅览
李广辉,张艳艳,王萌等.载体对Fe基催化剂CO2催化加氢制低碳烯烃性能的影响[J].低碳化学与化工,2024,49(12):19-26.
LI Guanghui,ZHANG Yanyan,WANG Meng,et al.Effects of supports on catalytic performances of Fe-based catalysts for CO2 hydrogenation to light olefins[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):19-26.
李广辉,张艳艳,王萌等.载体对Fe基催化剂CO2催化加氢制低碳烯烃性能的影响[J].低碳化学与化工,2024,49(12):19-26. DOI: 10.12434/j.issn.2097-2547.20240125.
LI Guanghui,ZHANG Yanyan,WANG Meng,et al.Effects of supports on catalytic performances of Fe-based catalysts for CO2 hydrogenation to light olefins[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):19-26. DOI: 10.12434/j.issn.2097-2547.20240125.
选择适宜载体对于合理设计高效CO
2
催化加氢制低碳烯烃(乙烯、丙烯和丁烯)的新型Fe基催化剂十分重要。采用水热法合成不同载体并浸渍K和Fe制备了一系列Fe基催化剂(K-Fe/ZrO
2
、K-Fe/ZnO、K-Fe/TiO
2
和K-Fe/Al
2
O
3
),考察了载体对催化剂CO
2
催化加氢性能的影响。采用XRD、N
2
吸/脱附、Raman、CO-TPD、CO
2
-TPD、原位Raman和水接触角测试等表征方法,研究了载体对Fe活性物种生成的诱导作用。结果表明,在温度320 ℃、压力2.0 MPa、原料气
V
(CO
2
):
V
(H
2
):
V
(Ar) = 1:3:3和气时空速10000 mL/(g·h)的反应条件下,K-Fe/ZrO
2
表现出较高低碳烯烃选择性(42.4%)和CO
2
转化率(36.2%)。与其他催化剂相比,K-Fe/ZrO
2
对CO和CO
2
具有适宜强度的吸附性能,有利于CO
2
活化和碳沉积,在获得更多Fe
x
C
y
活性物种的同时,抑制了烯烃二次加氢。此外,K-Fe/ZrO
2
在反应过程中因碳沉积而具有较强疏水性,进一步减轻了Fe
x
C
y
被水氧化的程度,提高了低碳烯烃选择性。
The selection of suitable support is crucial for the rational design of novel and efficient Fe-based catalysts for CO
2
hydrogenation to light olefins (ethylene
propylene and butene). Supports were synthesized by hydrothermal method
and impregnated with K and Fe to prepare a series of Fe-based catalysts (K-Fe/ZrO
2
K-Fe/ZnO
K-Fe/TiO
2
and K-Fe/Al
2
O
3
). The effects of these supports on the catalytic performance of CO
2
hydrogenation were investigated. The catalysts were characterized by XRD
N
2
absorption/desorption
Raman
CO-TPD
CO
2
-TPD
in suit Raman and water droplet contact angle tests
and the induction effects of supports on the generation of Fe active species were studied. The results show that under reaction conditions of temperature of 320 ℃
pressure of 2.0 MPa
feed gas
V
(CO
2
):
V
(H
2
):
V
(Ar) = 1:3:3 and gas hourly space velocity of 10000 mL/(g·h)
K-Fe/ZrO
2
exhibites superior selectivity of light olefins (42.4%) and CO
2
conversion rate (36.2%). Compared to other catalysts
K-Fe/ZrO
2
has a suitable adsorption capacity for CO and CO
2
which is beneficial for CO
2
activation and carbon deposition. It also inhibits the secondary hydrogenation of olefins while obtaining more Fe
x
C
y
active species. Additionally
K-Fe/ZrO
2
exhibites strong hydrophobicity due to carbon deposition during the reaction process
further reducing the degree of water oxidation of Fe
x
C
y
and improving the selectivity of light olefins.
CO2加氢低碳烯烃载体动态演变Fe基催化剂
CO2 hydrogenationlight olefinssupportdynamic evolutionFe-based catalysts
高鹏, 崔勖, 钟良枢, 等. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展, 2019, 38(1): 183-195.
GAO P, CUI X, ZHONG L X, et al. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity [J]. Chemical Industry and Engineering Progess, 2019, 38(1): 183-195.
RA E C, KIM K Y, KIM E H, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives [J]. ACS Catalysis, 2020, 10(19): 11318-11345.
RONDA-LLORET M, ROTHENBERG G, SHIJU N R. A critical look at direct catalytic hydrogenation of carbon dioxide to olefins [J]. ChemSusChem, 2019, 12(17): 3896-3914.
TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review [J]. ACS Catalysis, 2013, 3(9): 2130-2149.
WANG D, XIE Z H, POROSOFF M D, et al. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics [J]. Chem, 2021, 7(9): 2277-2311.
张鹏, 孟凡会, 杨贵楠, 等. 金属氧化物在OX-ZEO催化剂中催化COx加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172.
ZHANG P, MENG F H, YANG G N, et al. Progress of metal oxide in OX-ZEO catalyst for COx hydrogenation to light olefins [J]. Chemical Industry and Engineering Progess, 2022, 41(8): 4159-4172.
GAO P, DANG S S, LI S G, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis [J]. ACS Catalysis, 2017, 8(1): 571-578.
LI Z L, WANG J J, QU Y Z, et al. Highly Selective conversion of carbon dioxide to lower olefins [J]. ACS Catalysis, 2017, 7(12): 8544-8548.
GAO S S, XU S T, WEI Y X, et al. Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34: Coke, diffusion, and acidic site accessibility [J]. Journal of Catalysis, 2018, 367: 306-314.
梁兵连, 段洪敏, 侯宝林, 等. 二氧化碳加氢合成低碳烯烃的研究进展[J]. 化工进展, 2015, 34(10): 3746-3754.
LIANG B L, DUANG H M, HOU B L, et al. Progress in the catalytic hydrogenation of carbon dioxide to light olefins [J]. Chemical Industry and Engineering Progess, 2015, 34(10): 3746-3754.
刘伊伟, 黄健, 陈云霞. 二氧化碳加氢制低碳烯烃铁基催化剂的研究进展[J]. 精细石油化工, 2024, 41(1): 65-71.
LIU Y W, HUANG J, CHEN Y X. Research progress on iron-based catalysts for carbon dioxide hydrogenation to low-carbon olefins [J]. Speciality Petrochemicals, 2024, 41(1): 65-71.
REYMOND J P, MERIAUDEAU P, TEICHNER S J. Changes in the surface-structure and composition of an iron catalyst of reduced or unreduced Fe2O3 during the reaction of carbon-monoxide and hydrogen [J]. Journal of Catalysis, 1982, 75(1): 39-48.
DING M Y, YANG Y, WU B S, et al. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst [J]. Applied Energy, 2015, 160: 982-989.
张俊, 张征湃, 苏俊杰, 等. 载体碱性对Fe基催化剂费-托合成反应的影响[J]. 化工学报, 2016, 67(2): 549-556.
ZHANG J, ZHANG Z P, SU J J, et al. Effect of support basicity on iron-based catalysts for Fischer-Tropsch synthesis [J] CIESC Journal. 2016, 67(2): 549-556.
BAO J Y, XU X Q, ZHAO Q C, et al. Key Role of metal oxide support in tuning active surface components of Fe-based catalysts for CO2 hydrogenation [J]. Energy & Fuels, 2023, 37(20): 15943-15955.
LIU Y Y, CHEN B J, LIU R, et al. CO2 hydrogenation to olefins on supported iron catalysts: Effects of support properties on carbon-containing species and product distribution [J]. Fuel, 2022, 324(12): 4649-4661.
XU Y F, LI X Y, GAO J H, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products [J]. Science, 2021, 371(6529): 610-613.
孙杨, 丁豆豆, 林昌, 等. 动态现场原位(operando)表征技术在多相催化反应中的应用与进展[J]. 化工进展, 2019, 38(1): 260-277.
SUN Y, DING D D, LIN C, et al. Advances in operando techniques for the heterogeneouscatalytic reactions [J] Chemical Industry and Engineering Progess, 2019, 38(1): 260-277.
XU Y, ZHAI P, DENG Y C, et al. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives [J]. Angewandte Chemie International Edition, 2020, 59(48): 21736-21744.
FU D L, DAI W W, XU X C, et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy [J]. ChemCatChem, 2015, 7(5): 752-756.
TAN P H, DIMOVSKI S, GOGOTSI Y. Raman scattering of non-planar graphite: Arched edges, polyhedral crystals, whiskers and cones [J]. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, 2004, 362(1824): 2289-2310.
ZHAO W J, TAN P H, ZHANG J, et al. Charge transfer and optical phonon mixing in few-layer graphene chemically doped with sulfuric acid [J]. Physical Review B, 2010, 82(24): 54231-54238.
HUANG J, JIANG S Y, WANG M, et al. Dynamic evolution of Fe and carbon species over different ZrO2 Supports during CO prereduction and their effects on CO2 hydrogenation to light olefins [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(23): 7891-7903.
FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B, 2000, 61(20): 14095-14107.
ZHU J, WANG P, ZHANG X B, et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO hydrogenation [J]. Science Advances, 2022, 8(5): 3629-3640.
ZHANG Z Z, CHEN B J, JIA L Y, et al. Unraveling the role of Fe5C2 in CH4 formation during CO2 hydrogenation over hydrophobic iron catalysts [J]. Applied Catalysis B: Environmental, 2023, 327: 122449-122460.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution