浏览全部资源
扫码关注微信
1.太原理工大学 化学工程与技术学院,山西 太原 030024
2.中石化(大连)石油化工研究院有限公司,辽宁 大连 116045
3.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
Published:25 January 2025,
Received:04 March 2024,
Revised:21 March 2024,
移动端阅览
LI JIANGTAO, LIU XIANGYANG, HUANG YICHEN, et al. Effects of metal-support interactions in Ni/USY catalysts on CO2 methanation performances. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 27-34.
LI JIANGTAO, LIU XIANGYANG, HUANG YICHEN, et al. Effects of metal-support interactions in Ni/USY catalysts on CO2 methanation performances. [J]. Low-carbon chemistry and chemical engineering, 2025, 50(1): 27-34. DOI: 10.12434/j.issn.2097-2547.20240084.
调控金属-载体相互作用是提升负载型Ni基催化剂CO
2
甲烷化性能的重要途径之一。采用浸渍法通过调变溶液pH值制备了系列Ni/USY-
X
(
X
= 1、3或5)催化剂,考察了各催化剂的CO
2
甲烷化性能。其中Ni/USY-3催化剂在450 ℃、20 h反应条件下的稳定性测试中表现出相对最优的CO
2
甲烷化性能,CO
2
转化率和CH
4
选择性分别达到84.5%和95.7%。采用XRD、H
2
-TPR、SEM和TEM等对催化剂的物相结构、还原性能和形貌进行了表征,从微观层面系统考察了浸渍溶液pH值对催化剂结构和CO
2
甲烷化性能的影响。结果表明,在适宜pH值调控下,金属-载体相互作用增强,活性金属Ni晶粒的粒径减小,分散度提高。进一步借助原位FT-IR对催化剂的反应路径进行了分析,发现Ni/USY-3催化剂遵循甲酸盐路径。高分散性、较小粒径的活性金属Ni晶粒为碳酸氢盐及时氢化为关键中间体单齿甲酸盐提供了丰富的活性位点,从而实现了CO
2
的高效转化。
Tailoring of the metal-support interaction is one of the important ways to improve the CO
2
methanation performances on the supported Ni-based catalysts. A series of Ni/USY-
X
(
X
= 1
3 or 5) catalysts were prepared by impregnation by adjusting the pH value of the solution. And CO
2
methanation performances of catalysts were investigated. Ni/USY-3 catalyst showes excellent CO
2
methanation performance with CO
2
conversion rate of 84.5% and
CH
4
selectivity of 95.7% in stability test at the condition of 450 ℃ and 20 h. XRD
H
2
-TPR
SEM and TEM were used to characterize the structure and morphology of the catalyst
and the effects of impregnating solution pH value on the structure and CO
2
methanation performances of the catalysts were systematically investigated at the microscopic level. The results show that under appropriate pH value control
the metal-support interaction is enhanced
the particle size of the active metal Ni particles is reduced
and the dispersion is enhanced. Furthermore
the reaction paths of catalyst were analyzed by in situ FT-IR. The results indicate that the Ni/USY-3 catalyst follows the formate pathway. The highly dispersed and small particle size of the active metal Ni particles provide abundant active sites for the timely hydrogenation of bicarbonate into the key intermediate monodontate
leading to achieving efficient conversion of CO
2
.
CO2甲烷化金属-载体相互作用酸性
CO2 methanationmetal-support interactionacidity
LI Z Y, WANG H, CUI G Q, et al. Synergistic catalysis at the Ni/ZrO2-X interface toward low-temperature methanation [J]. ACS Applied Materials & Interfaces, 2023, 15(15): 19021-19031.
YAN X L, SUN W, FAN L M, et al. Nickel@siloxene catalytic nanosheets for high-performance CO2 methanation [J]. Nature Communications, 2019, 10: 2608.
李浩淼. 二氧化碳甲烷化高效镍基双金属催化剂的制备及性能研究[D]. 北京: 北京化工大学, 2023.
LI H M. Design and performance study of high efficiency nickel-based bimetallic catalysts for carbon dioxide methanation [D]. Beijing: Beijing University of Chemical Technology, 2023.
杨颂, 李正甲, 杨林颜, 等. CO2甲烷化催化剂的研究进展[J]. 高校化学工程学报, 2023, 37(1): 13-21.
YANG S, LI Z J, YANG L Y, et, al. Research progress of CO2 methanation catalysts [J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(1): 13-21.
张旭, 王子宗, 陈建峰. 二氧化碳甲烷化用镍基催化剂助剂改性研究进展[J]. 天然气化工—C1化学与化工, 2015, 40(4): 97-102.
ZHANG X, WANG Z Z, CHEN J F, et al. Research progress in effects of promoters on supported nickel-based CO2 methanation catalysts [J]. Natural Gas Chemical Industry, 2015, 40(4): 97-102.
彭雨欣, 肖鑫, 梅加, 等. 等离子体辅助柠檬酸络合浸渍法制备Ni基催化剂及其CO2甲烷化反应催化性能[J]. 低碳化学与化工, 2023, 48(3): 89-97.
PENG Y X, XIAO X, MEI J, et al. Ni-based catalysts prepared by plasma-assisted citric acid complexation impregnation and their catalytic performance for CO2 methanation [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(3): 89-97.
曹敏, 毛玉娇, 王倩倩, 等. 金属催化剂烧结机制及抗烧结策略[J]. 化工进展, 2023, 42(2):744-755.
CAO M, MAO Y J, WANG Q Q, et al. Sintering mechanism and sintering-resistant strategies for metal-based catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(2):744-755.
ZHANG Z H, YU Z H, FENG K, et al. Eu3+ doping-promoted Ni-CeO2 interaction for efficient low-temperature CO2 methanation [J]. Applied Catalysis B: Environmental, 2022, 317: 121800.
YE R P, LIAO L, REINA T R, et al. Engineering Ni/SiO2 catalysts for enhanced CO2 methanation [J]. Fuel, 2021, 285: 119151.
ITALIANO C, FERRANTE G D, PINO L, et al. Silicon carbide and alumina open-cell foams activated by Ni/CeO2-ZrO2 catalyst for CO2 methanation in a heat-exchanger reactor [J]. Chemical Engineering Journal, 2022, 434: 134685.
YIN L T, CHEN X Y, SUN M H, et al. Insight into the role of Fe on catalytic performance over the hydrotalcite-derived Ni-based catalysts for CO2 methanation reaction [J]. International Journal of Hydrogen Energy, 2022, 47(11): 7139-7149.
GUO X P, TRAITANGWONG A, HU M X, et al. Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material [J]. Energy & Fuels, 2018, 32(3): 3681-3689.
LI X Q, LIU P, YANG Y T, et al. Pyrolysis behaviors of biomass tar-related model compounds catalyzed by Ni-modified HZSM-5 molecular sieve [J]. Industrial Crops and Products, 2023, 199: 116743.
张锦川, 杨应举, 刘晶, 等. Ni/SSZ-13催化剂的CO2甲烷化反应性能研究[J]. 燃料化学学报, 2021, 49(7): 960-966.
ZHANG J C, YANG Y J, LIU J, et, al. Catalytic activity of Ni/SSZ-13 catalyst for CO2 methanation [J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 960-966.
AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation [J]. Applied Catalysis B: Environmental, 2014, 147: 359-368.
LIU Q H, FANG Y P, MIAO C H, et al. Preparation of ZSM-5 molecular sieve modified by kaolin and its CO2 adsorption performance investigation [J]. Microporous Mesoporous Materials, 2023, 360: 112678.
BACARIZA M C, AMJAD S, TEIXEIRA P, et al. Boosting Ni dispersion on zeolite-supported catalysts for CO2 methanation: The influence of the impregnation solvent [J]. Energy & Fuels, 2020, 34(11): 14656-14666.
XING C, AI P P, ZHANG P P, et al. Fischer-Tropsch synthesis on impregnated cobalt-based catalysts: New insights into the effect of impregnation solutions and pH value [J]. Journal of Energy Chemistry, 2016, 25(6): 994-1000.
WANG Z, CHEN B, ZHAO Q, et al. Metal-support interaction induced atomic dispersion and redispersion of Pd on CeO2 for passive NOx adsorption [J]. Chemical Engineering Journal, 2023, 470: 144080.
LIN S X, LI Z H, LI M S. Tailoring metal-support interactions via tuning CeO2 particle size for enhancing CO2 methanation activity over Ni/CeO2 catalysts [J]. Fuel, 2023, 333: 126369.
GAC W, ZAWADZKI W, SLOWIK G, et al. The state of BEA zeolite supported nickel catalysts in CO2 methanation reaction [J]. Applied Surface Science, 2021, 564: 150421.
LI G H, HAO H X, JIN P, et al. Dry reforming of methane over Ni/Al2O3 catalysts: Support morphological effect on the coke resistance [J]. Fuel, 2024, 362: 130855.
PAN Q S, PENG J X, SUN T J, et al. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites [J]. Catalysis Communications, 2014, 45: 74-78.
WU X S, LI L, SONG M X, et al. Insight into the impacts of MnO2 crystal phases on CO2 selective hydrogenation to CH4 on Ni/MnOx catalysts [J]. Journal of CO2 Utilization, 2023, 75: 102584.
ONRUBIA-CALVO J A, LÓPEZ-RODRÍGUEZ S, VILLAR-GARCÍA I J, et al. Molecular elucidation of CO2 methanation over a highly active, selective and stable LaNiO3/CeO2-derived catalyst by in situ FTIR and NAP-XPS [J]. Applied Catalysis B: Environmental, 2024, 342: 123367.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution