
浏览全部资源
扫码关注微信
上海交通大学 制冷与低温工程研究所,上海 200240
Published:25 December 2024,
Received:23 February 2024,
Revised:25 April 2024,
移动端阅览
张怡婷,巨永林.MOFs膜在氢氦甲烷分离和纯化工艺中的应用进展[J].低碳化学与化工,2024,49(12):68-78.
ZHANG Yiting,JU Yonglin.Application progress of MOFs membranes in hydrogen helium methane separation and purification processes[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):68-78.
张怡婷,巨永林.MOFs膜在氢氦甲烷分离和纯化工艺中的应用进展[J].低碳化学与化工,2024,49(12):68-78. DOI: 10.12434/j.issn.2097-2547.20240066.
ZHANG Yiting,JU Yonglin.Application progress of MOFs membranes in hydrogen helium methane separation and purification processes[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):68-78. DOI: 10.12434/j.issn.2097-2547.20240066.
金属有机框架(MOFs)材料具有高比表面积、可调孔隙性和高稳定性等良好特性,使得MOFs膜在气体吸附和分离领域具有良好的应用前景。然而,MOFs膜的工艺研究面临设计路线不明确和商业化落地难等问题,因此综述MOFs膜在氢气、氦气和甲烷分离和纯化技术中的研究进展及潜在应用具有重要意义。首先,介绍了MOFs材料的结构性质,以及分子模拟在MOFs材料筛选及性能预测中的应用;总结了实验制备的MOFs膜对氢气、氦气和甲烷的分离性能,包括材料的内部结构、分离机制、稳定性和适用工况。其次,鉴于MOFs膜在工业中的应用尚处起步阶段,探讨了其在含膜分离单元工艺中的可能应用,以及相关挑战和限制因素。再次,从MOFs膜对传统分离材料的替代,以及整体工艺向含膜工艺升级两方面,结合相关案例开展了经济性讨论,发现膜分离技术的引用升级具有可观的经济效益。最后,结合MOFs材料的优良特性,对未来该领域的研究工作进行了展望,旨在为MOFs膜在氢氦甲烷分离和纯化工艺中的应用提供参考。
Metal-organic frameworks (MOFs) materials have great properties such as high specific surface area
adjustable porosity and high stability
so the MOFs membranes have excellent gas adsorption and desorption properties. However
current research on MOFs membrane processes faces challenges such as unclear design routes and difficulties in commercialization. Therefore
reviewing the research progress and potential applications of MOFs membranes in hydrogen
helium and methane separation and purification technologies are of significant importance. Firstly
the structural properties of MOFs materials and the application of molecular simulation in the selection and performance prediction of MOFs materials were introduced. Separation performances of MOFs membranes prepared experimentally for hydrogen
helium and methane were summarized
including the internal structure of the materials
separation mechanisms
stability
and applicable conditions. Secondly
considering that the industrial application of MOFs membranes is still in its early stages
the possible applications of these membranes in processes involving membrane separation units as well as related challenges and limiting factors
were discussed. Furthermore
an economic analysis was conducted based on case studies
exploring the replacement of traditional separation materials with MOFs membranes and the upgrading of entire processes to membrane separation technologies
revealing considerable economic benefits of adopting membrane separation technologies. Finally
in light of the excellent properties of MOFs materials
future research directions in this field were anticipated
aiming to provide a reference for the application of MOFs membranes in hydrogen
helium and methane separation and purification processes.
MOFs膜氢氦甲烷分离膜分离法氢气纯化氦气提取
MOFs membraneshydrogen helium methane separationmembrane separation methodhydrogen purificationhelium extraction
BERNARDO G, ARAÚJO T, DA SILVA L T, et al. Recent advances in membrane technologies for hydrogen purification [J]. International Journal of Hydrogen Energy, 2020, 45(12): 7313-7338.
KLOUTSE F A, HOURRI A, NATARAJAN S, et al. Hydrogen separation by adsorption: Experiments and modelling of H2-N2-CO2 and H2-CH4-CO2 mixtures adsorption on CuBTC and MOF-5 [J]. Microporous and Mesoporous Materials, 2018, 271: 175-185.
SCHOLES C A, GHOSH U K. Review of membranes for helium separation and purification [J]. Membranes, 2017, 7(1): 9.
LI Y P, XIAO H Y, ZHENG W J, et al. Multi-membrane integrated processes for helium and methane synergistic recovery after flash-vaporization units in LNG plants [J]. Separation and Purification Technology, 2023, 326: 124825.
HAMEDI H, KARIMI I A, GUNDERSEN T. A novel cost-effective silica membrane-based process for helium extraction from natural gas [J]. Computers & Chemical Engineering, 2019, 121: 633-638.
PALIZDAR A, VATANI A. Design and analysis of a novel self-refrigerated natural gas liquefaction system integrated with helium recovery and CO2 liquefaction processes [J]. Journal of Cleaner Production, 2023, 423: 138600.
郭浩. 金属有机骨架膜的制备及其氢气纯化性能的研究[D]. 上海: 华东师范大学, 2021.
GUO H. Preparation of metal-organic framework membranes preparation of metal-organic framework membranes [D]. Shanghai: East China Normal University, 2021.
李雯, 王志, 李潘源, 等. 用于甲烷-氮气体系分离的膜技术研究进展[J]. 化工学报, 2016, 67(2): 404-415.
LI W, WANG Z, LI P Y, et al. Progress in membrane technology for CH4-N2 separation [J]. Chinese Journal of Chemical Engineering, 2016, 67(2): 404-415.
XIONG L, PENG N, LIU L, et al. Helium extraction and nitrogen removal from LNG boil-off gas [J]. IOP Conference Series: Materials Science and Engineering, 2017, 171(1): 012003.
QUADER M A, RUFFORD T E, SMART S. Integration of hybrid membrane-distillation processes to recover helium from pre-treated natural gas in liquefied natural gas plants [J]. Separation and Purification Technology, 2021, 263: 118355.
KAPANTAIDAKIS G, KOOPS G, WESSLING M. Preparation and characterization of gas separation hollow fiber membranes based on polyethersulfone-polyimide miscible blends [J]. Desalination, 2002, 145(1/2/3): 353-357.
SAUFI S M, ISMAIL A F. Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane [J]. Songklanakarin Journal of Science and Technology , 2002, 24: 843-854.
ROBESON L M. Correlation of separation factor versus permeability for polymeric membranes [J]. Journal of Membrane science, 1991, 62(2): 165-185.
SUNARSO J, HASHIM S S, LIN Y S, et al. Membranes for helium recovery: An overview on the context, materials and future directions [J]. Separation and Purification Technology, 2017, 176: 335-383.
RICCO R, STYLES M J, FALCARO P. MOF-based devices for detection and removal of environmental pollutants [M]//Metal-Organic Frameworks (MOFs) for Environmental Applications. Amsterdam: Elsevier, 2019: 383-426.
PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity [J]. Science, 2017, 356(6343): eaab0530.
MOGHADAM P Z, ISLAMOGLU T, GOSWAMI S, et al. Computer-aided discovery of a metal-organic framework with superior oxygen uptake [J]. Nature Communications, 2018, 9(1): 1378.
KADIOGLU O, KESKIN S. Efficient separation of helium from methane using MOF membranes [J]. Separation and Purification Technology, 2018, 191: 192-199.
SCHOLES C A, GHOSH U. Helium separation through polymeric membranes: Selectivity targets [J]. Journal of Membrane Science, 2016, 520: 221-230.
ZARABADI-POOR P, MAREK R. Metal-Organic frameworks for helium recovery from natural gas via N2/He separation: A computational screening [J]. The Journal of Physical Chemistry C, 2019, 123(6): 3469-3475.
WANG S H, CHENG M, LUO L, et al. High-throughput screening of metal-organic frameworks for hydrogen purification [J]. Chemical Engineering Journal, 2023, 451: 138436.
YU C J, LIANG Y Y, GUO X Y, et al. Fabrication of metal-organic framework-mixed matrix membranes with abundant open metal sites through dual-induction mechanism [J]. Separation and Purification Technology, 2022, 290: 120850.
LEE K, ISLEY III W C, DZUBAK A L, et al. Design of a metal-organic framework with enhanced back bonding for separation of N2 and CH4 [J]. Journal of the American Chemical Society, 2014, 136(2): 698-704.
YOON J W, CHANG H, LEE S J, et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites [J]. Nature Materials, 2017, 16(5): 526-531.
TIAN T, ZENG Z X, VULPE D, et al. A sol-gel monolithic metal-organic framework with enhanced methane uptake [J]. Nature Materials, 2018, 17(2): 174-179.
ZHANG X, ZHENG Q R, HE H Z. Multicomponent adsorptive separation of CO2, CH4, N2, and H2 over M-MOF-74 and AX-21@M-MOF-74 composite adsorbents [J]. Microporous and Mesoporous Materials, 2022, 336: 111899.
CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
SHI Y P, WU S S, WANG Z G, et al. Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation [J]. Separation and Purification Technology, 2021, 277: 119449.
NANDANWAR S U, CORBIN D R, SHIFLETT M B. A review of porous adsorbents for the separation of nitrogen from natural gas [J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13355-13369.
CARREON M. Molecular sieve membranes for N2/CH4 separation [J]. Journal of Materials Research, 2017, 33: 1-12.
KIM T H, KIM S Y, YOON T U, et al. Improved methane/nitrogen separation properties of zirconium-based metal-organic framework by incorporating highly polarizable bromine atoms [J]. Chemical Engineering Journal, 2020, 399: 125717.
LI L Y, YANG L F, WANG J W, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework [J]. AIChE Journal, 2018, 64(10): 3681-3689.
HABIB N, DURAK Ö, UZUN A, et al. Incorporation of a pyrrolidinium-based ionic liquid/MIL-101(Cr) composite into Pebax sets a new benchmark for CO2/N2 selectivity [J]. Separation and Purification Technology, 2023, 312: 123346.
ZHANG F F, LI K J, CHEN J, et al. Efficient N2/CH4 separation in a stable metal-organic framework with high density of open Cr sites [J]. Separation and Purification Technology, 2022, 281: 119951.
AKBARI A, KARIMI-SABET J, GHOREISHI S M. Matrimid® 5218 based mixed matrix membranes containing metal organic frameworks (MOFs) for helium separation [J]. Chemical Engineering and Processing-Process Intensification, 2020, 148: 107804.
AKBARI A, KARIMI-SABET J, GHOREISHI S M. Intensification of helium separation from CH4 and N2 by size-reduced Cu-BTC particles in Matrimid matrix [J]. Separation and Purification Technology, 2020, 251: 117317.
ADAMS R, CARSON C, WARD J, et al. Metal organic framework mixed matrix membranes for gas separations [J]. Microporous and Mesoporous Materials, 2010, 131: 13-20.
FEIJANI E A, MAHDAVI H, TAVASOLI A. Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications [J]. Chemical Engineering Research and Design, 2015, 96: 87-102.
BUSHELL A F, ATTFIELD M P, MASON C R, et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8 [J]. Journal of Membrane Science, 2013, 427: 48-62.
PEREZ E V, BALKUS K J, FERRARIS J P, et al. Mixed-matrix membranes containing MOF-5 for gas separations [J]. Journal of Membrane Science, 2009, 328(1): 165-173.
GU Z J, YANG Z B, GUO X Y, et al. Vacuum resistance treated ZIF-8 mixed matrix membrane for effective CH4/N2 separation [J]. Separation and Purification Technology, 2021, 272: 118845.
FENG W R, WU H, JIN J S, et al. Transformation of Al-CDC from 3D crystals to 2D nanosheets in macroporous polyacrylates with enhanced CH4/N2 separation efficiency and stability [J]. Chemical Engineering Journal, 2022, 429: 132285.
DAI Z D, DENG J, HE X Z, et al. Helium separation using membrane technology: Recent advances and perspectives [J]. Separation and Purification Technology, 2021, 274: 119044.
GAO J H, SONG Y, JIA C Y, et al. A comprehensive review of recent developments and challenges for gas separation membranes based on two-dimensional materials [J]. FlatChem, 2024, 43: 100594.
QIAN Q H, ASINGER P A, LEE M J, et al. MOF-based membranes for gas separations [J]. Chemical Reviews, 2020, 120(16): 8161-8266.
SOLEIMANY A, KARIMI-SABET J, HOSSEINI S S. Experimental and modeling investigations towards tailoring cellulose triacetate membranes for high performance helium separation [J]. Chemical Engineering Research and Design, 2018, 137: 194-212.
JEAZET H B T, STAUDT C, JANIAK C. Metal-organic frameworks in mixed-matrix membranes for gas separation [J]. Dalton Trans, 2012, 41(46): 14003-14027.
崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J/OL]. 材料导报, 1-17[2024-12-10]. http://kns.cnki.net/kcms/detail/50.1078.TB.20240203.2013.004.htmlhttp://kns.cnki.net/kcms/detail/50.1078.TB.20240203.2013.004.html.
CUI S C, XU H B, PENG N. The application of metal-organic frameworks in adsorptive gas purification [J]. Materials Reports, 1-17[2024-12-10].http://kns.cnki.net/kcms/detail/50.1078.TB.20240203.2013.004.htmlhttp://kns.cnki.net/kcms/detail/50.1078.TB.20240203.2013.004.html.
陶宇鹏. 不同氢气净化提纯技术在煤制氢中的经济性分析[J]. 四川化工, 2021, 24(4): 13-16.
TAO Y P. Economic analysis of different hydrogen purification technologies in coal hydrogen production [J]. Sichuan Chemical Industry, 2021, 24(4): 13-16.
KUO J C, WANG K H, CHEN C. Pros and cons of different Nitrogen Removal Unit (NRU) technology [J]. Journal of Natural Gas Science and Engineering, 2012, 7: 52-59.
付雪峰. 改良的天然气提氦装置: 212133044U [P]. 2020-12-11.
FU X F. Improved helium extraction from natural gas: 212133044U [P]. 2020-12-11.
阮雪华, 贺高红, 郭明钢, 等. 一种富氦天然气液化尾气生产高纯氦气的多技术集成分离工: 113144821A [P]. 2021-07-23.
RUAN X H, HE G H, GUO M G, et al. A multi-technology integrated separation process for high purity helium production from helium-rich natural gas liquefaction off-gas: 113144821A [P]. 2021-07-23.
张良聪. 天然气提氦膜深冷耦合工艺研究[D]. 大连: 大连理工大学, 2013.
ZHANG L C. Research on membrane separation-cryogenic hybrid process forhelium extraction from natural gas [D]. Dalian: Dalian university of technology, 2013.
张丽萍, 巨永林. 基于深冷技术的液化天然气蒸发气提氦流程优化分析[J]. 低温工程, 2023, (2): 97-106.
ZHANG L P, JU Y L. Optimization analysis of helium extraction process from LNG-BOG using cryogenic technology [J]. Cryogenics, 2023, (2): 97-106
ALDERS M, WINTERHALDER D, WESSLING M. Helium recovery using membrane processes [J]. Separation and Purification Technology, 2017, 189: 433-440.
NAQUASH A, QYYUM M A, CHANIAGO Y D, et al. Separation and purification of syngas-derived hydrogen: A comparative evaluation of membrane- and cryogenic-assisted approaches [J]. Chemosphere, 2023, 313: 137420.
QUADER M A, RUFFORD T E, SMART S. Modeling and cost analysis of helium recovery using combined-membrane process configurations [J]. Separation and Purification Technology, 2020, 236: 116269.
CHOI S H, SULTAN M M B, ALSUWAILEM A A, et al. Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures [J]. Separation and Purification Technology, 2019, 222: 152-161.
谭遥, 李琦, 王捷, 等. 掺氢天然气分离工艺方案及经济性分析[J]. 石油与天然气化工, 2023, 52(4): 41-47.
TAN Y, LI Q, WANG J, et al. Scheme and economic analysis of hydrogen-blended natural gas separation [J]. Chemical Engineering of Oil & Gas, 2023, 52(4): 41-47.
QUADER M A, SMART S, RUFFORD T E. Techno-economic evaluation of multistage membrane combinations using three different materials to recover helium from natural gas [M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2018, 44: 1201-1206.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution