
浏览全部资源
扫码关注微信
成都理工大学 油气藏地质及开发工程全国重点实验室,四川 成都 610059
Published:25 December 2024,
Received:06 February 2024,
Revised:25 March 2024,
移动端阅览
沈龙,邵子越,曾文静等.石英砂中二氧化碳水合物生长特性实验研究[J].低碳化学与化工,2024,49(12):127-133.
SHEN Long,SHAO Ziyue,ZENG Wenjing,et al.Experimental study on growth characteristics of CO2 hydrates in quartz sand[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):127-133.
沈龙,邵子越,曾文静等.石英砂中二氧化碳水合物生长特性实验研究[J].低碳化学与化工,2024,49(12):127-133. DOI: 10.12434/j.issn.2097-2547.20240052.
SHEN Long,SHAO Ziyue,ZENG Wenjing,et al.Experimental study on growth characteristics of CO2 hydrates in quartz sand[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):127-133. DOI: 10.12434/j.issn.2097-2547.20240052.
向海底沉积物层注入二氧化碳(CO
2
)形成CO
2
水合物是一种有效的碳封存方式,但存在水合物生成诱导时间长、生长速率慢等问题。将石英砂作为多孔介质,采用恒温恒容法,在实验温度为273.65 K、初始压力为3.5 MPa的条件下,研究了石英砂粒径、初始含水饱和度和添加剂对CO
2
水合物生长动力学和宏观形貌演化规律的影响。结果表明,3.4% NaCl溶液(百分数为质量分数,下同)中,设定初始含水饱和度为75%,当石英砂粒径为26~40目时,CO
2
水合物生长速率相对最快、生成量最多,最终耗气量为0.0285 mol,水的转化率达到7.27%。设定石英砂粒径为10~18目,当初始含水饱和度为50%时,CO
2
水合物生成量相对最多,最终耗气量为0.0384 mol,水的转化率和转化量分别为17.17%和4.29 g。1% L-甲硫氨酸溶液中,CO
2
水合物生长速率加快,生成量增大,L-甲硫氨酸具有明显的促进作用,最终耗气量是纯水中的3.6倍,水的转化率则提升了5.7倍。与纯水相比,3.4% NaCl溶液中CO
2
水合物生成量无明显变化。复配溶液(3.4% NaCl + 1% L-甲硫氨酸)中,L-甲硫氨酸促进效果减弱,CO
2
水合物生长速率变慢,生成量减少,但仍优于3.4% NaCl溶液。形态学实验结果表明,纯水中CO
2
水合物膜覆盖时间最短(5.33 s),复配溶液中CO
2
水合物膜覆盖时间最长(14.33 s),添加L-甲硫氨酸可以改变水合物的宏观形貌,使水合物变得疏松多孔。
Injecting carbon dioxide (CO
2
) into seabed sediment layers to form CO
2
hydrates is an effective method of carbon sequestration. However
this approach faces challenges such as long induction times and slow growth rates of hydrate formation. Using quartz sand as the porous medium
the effects of quartz sand grain size
initial water saturation and additives on the kinetics of CO
2
hydrate growth and the evolution of its macroscopic morphology were studied under isothermal and isochoric conditions at the experimental temperature of 273.65 K and the initial pressure of 3.5 MPa. The study results indicate that in a 3.4% NaCl solution (percentage is by mass
same below)
with an initial water saturation of 75%
when the quartz sand grain size is 26 mesh to 40 mesh
the CO
2
hydrate growth rate is the fastest
and the formation amount is the highest. And the final gas consumption is 0.0285 mol
with a water conversion rate of 7.27%. With a quartz sand grain size of 10 mesh to 18 mesh
when the initial water saturation is 50%
the CO
2
hydrate formation amount is the highest
with a final gas consumption of 0.0384 mol and water conversion and conversion amount of 17.17% and 4.29 g
respectively. In a 1% L-methionine solution
the CO
2
hydrate growth rate accelerates
and the formation amount increases significantly
with a final gas consumption 3.6 times higher than in pure water and the conversion rate of water increases by 5.7 times. Compared to pure water
the CO
2
hydrate formation amount in the 3.4% NaCl solution does not show significant changes. In the mixed solution (3.4% NaCl + 1% L-methionine)
the promoting effect of L-methionine is weakened
resulting in a slower CO
2
hydrate growth rate and a reduced formation amount
though still better than in the 3.4% NaCl solution. Morphological experime
nts indicate that the CO
2
hydrate film coverage time is the shortest in pure water (5.33 s) and the longest in the mixed solution (14.33 s). Adding L-methionine can alter the macroscopic morphology of the hydrates
making them loose and porous.
海洋碳封存CO2水合物生长速率L-甲硫氨酸宏观形貌
marine carbon sequestrationCO2 hydratesgrowth rateL-methioninemacroscopic morphologies
张泉, 林进, 折印楠, 等. 我国二氧化碳地质封存潜力评价研究进展[J]. 中国石油和化工标准与质量, 2022, 42(11): 144-146.
ZHANG Q, LIN J, SHE Y N, et al. Research progress on the potential evaluation of carbon dioxide geological storage in China [J]. China Petroleum and Chemical Standard and Quality, 2022, 42(11): 144-146.
KUMAR Y, SANGWAI J S. Environmentally sustainable large-scale CO2 sequestration through hydrates in offshore basins: Ab initio comprehensive analysis of subsea parameters and economic perspective [J]. Energy & Fuels, 2023, 37(13): 8739-8764.
MCGRAIL B P, SCHAEF H T, WHITE M D, et al. Using carbon dioxide to enhance recovery of methane from gas hydrate reservoirs: Final summary report [R]. Richland: Pacific Northwest National Laboratory, 2007.
LE QUÉRÉ C, ANDREW R M, FRIEDLINGSTEIN P, et al. Global carbon budget 2017 [J]. Earth System Science Data, 2018, 10(1): 405-448.
李文平. CO2海底地质封存技术基础理论及现状分析[J]. 河南科技, 2021, 40(28): 141-143.
LI W P. Basic Theory and present situation analysis of carbon dioxide geological storage technology on seabed [J]. Henan Science and Technology, 2021, 40(28): 141-143.
SONG Y C, WANG S J, CHENG Z C, et al. Dependence of the hydrate-based CO2 storage process on the hydrate reservoir environment in high-efficiency storage methods [J]. Chemical Engineering Journal, 2021, 415: 128-937.
李金平, 姚泽, 李洋, 等. 冰点以下石英砂中二氧化碳水合物的生成特性[J]. 应用基础与工程科学学报, 2020, 28(4): 843-851.
LI J P, YAO Z, LI Y, et al. Formation behaviors of carbon dioxide hydrate in quartz sands below freezing point [J]. Journal of Basic Science and Engineering, 2020, 28(4): 843-851.
周航. 废弃天然气水合物藏中二氧化碳封存特性研究[D]. 大连: 大连理工大学, 2019.
ZHOU H. Natural gas hydrate reservoirs study on carbon dioxide sequestration characters in depleted [D]. Dalian: Dalian University of Technology, 2019.
FLEYFEL F, DEVLIN J P. Carbon dioxide clathrate hydrate epitaxial growth: Spectroscopic evidence for formation of the simple type-II CO2 hydrate [J]. The Journal of Physical Chemistry, 1991, 95(9): 3811-3815.
UCHIDA T, EBINUMA T, ISHIZAKI T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass [J]. The Journal of Physical Chemistry B, 1999, 103(18): 3659-3662.
BABU P, KUMAR R, LINGA P. Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process [J]. Energy, 2013, 50: 364-373.
ADEYEMO A, KUMAR R, LINGA P, et al. Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column [J]. International Journal of Greenhouse Gas Control, 2010, 4(3): 478-485.
MEKALA P, BUSCH M, MECH D, et al. Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration [J]. Journal of Petroleum Science and Engineering, 2014, 122: 1-9.
SHEN X D, LI Y, LI Y X, et al. Ultrarapid formation and direct observation of methane hydrate in the presence of L-tryptophan [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 8774-8785.
SHEN X D, ZHANG Y D, LI Y X, et al. Phase Equilibria of CO2 Hydrate in aqueous solutions of n-methyldiethanolamine [J]. Journal of Chemical & Engineering Data, 2024, 69(3): 808-814.
张银德, 李延霞, 李杨, 等. L-色氨酸促进二氧化碳水合物生成特性实验研究[J]. 低碳化学与化工, 2023, 48(3): 165-172.
ZHANG Y D, LI Y X, LI Y, et al. Experiment study on promotion effects of L-tryptophan on formation of carbon dioxide hydrate [J]. Low-Carbon Chemistry and Chemical, 2023, 48(3): 165-172.
申小冬, 邵子越, 唐宇航, 等. 羧甲基纤维素钠对CO2水合物动力学形成规律的影响[J]. 天然气工业, 2021, 41(10): 154-160.
SHEN X D, SHAO Z Y, TANG Y H, et al. Influence of carboxymethyl cellulose sodium on the formation kinetics of CO2 hydrate [J]. Natural Gas Industry, 2021, 41(10): 154-160.
邵子越, 申小冬, 李延霞, 等. 生物胶对二氧化碳水合物生成动力学影响实验研究[J]. 低碳化学与化工, 2023, 48(2): 155-161.
SHAO Z Y, SHEN X D, LI Y X, et al. Experimental study of influence of biological gums on formation kinetics of carbon dioxide hydrates [J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 155-161.
PENG D Y, ROBINSON D B. A new two-constant equation of state [J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.
郑继民. 试论海洋沉积物的工程性质及研究意义[J]. 山东海洋学院学报, 1978, (2): 80-86.
ZHENG J M. Engineering properties and research significance of marine sediments [J]. Journal of Shandong Oceanographic Institute, 1978, (2): 80-86.
陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, (3): 483-489.
CHEN D F, LI X X, XIA B. Distribution of gas hydrate stable zones and resource prediction in the qiongdongnan basin of the south China sea [J]. Chinese Journal of Geophysics, 2004, 47(3): 483-489.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution