
浏览全部资源
扫码关注微信
1.太原理工大学 轻纺工程学院,山西 晋中 030060
2.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
3.太原理工大学 煤科学与技术教育部重点实验室,山西 太原 030024
Published:25 December 2024,
Received:29 January 2024,
Revised:08 March 2024,
移动端阅览
李浩文,张曼,费鹏飞等.基于改性聚丙烯腈纳米纤维的铁锰脱硫剂构筑及其脱硫性能[J].低碳化学与化工,2024,49(12):86-95.
LI Haowen,ZHANG Man,FEI Pengfei,et al.Construction and desulfurization performance of Fe-Mn desulfurization sorbents based on modified polyacrylonitrile nanofibers[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):86-95.
李浩文,张曼,费鹏飞等.基于改性聚丙烯腈纳米纤维的铁锰脱硫剂构筑及其脱硫性能[J].低碳化学与化工,2024,49(12):86-95. DOI: 10.12434/j.issn.2097-2547.20240035.
LI Haowen,ZHANG Man,FEI Pengfei,et al.Construction and desulfurization performance of Fe-Mn desulfurization sorbents based on modified polyacrylonitrile nanofibers[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):86-95. DOI: 10.12434/j.issn.2097-2547.20240035.
聚丙烯腈(PAN)纳米纤维对金属离子吸附量较低,由此制备的脱硫剂性能较差。选取聚乙烯吡咯烷酮(PVP)和盐酸羟胺(HAC)分别对PAN纳米纤维进行改性,通过静电纺丝和表面改性得到了改性载体前驱体,后通过浸渍和热处理制得了铁锰双金属脱硫剂。研究了PVP添加量、HAC改性温度和金属盐浓度对脱硫剂结构和性能的影响。SEM分析表明,PVP和HAC改性均能得到具有良好纤维形貌的脱硫剂,活性组分在纤维表面分散性良好。TEM和XPS分析表明,Fe
2
O
3
和MnO
2
成功负载在纤维表面。XRD分析表明,脱硫剂硫化后生成了Fe
7
S
8
。织构性质分析表明,改性后脱硫剂的比表面积明显增大,未改性脱硫剂为5.91 m
2
/g,改性脱硫剂最大为8.10 m
2
/g(PVP改性)和14.23 m
2
/g(HAC改性)。ICP-OES分析表明,改性明显提高了脱硫剂活性组分负载量(质量分数),活性组分负载量从0.93%提升至最高22.65%(PVP改性)和30.97%(HAC改性)。脱硫性能测试表明,改性得到的铁锰双金属脱硫剂的穿透硫容(以100 g脱硫剂脱除的硫化氢质量计)由0.75 g分别提升至最高4.72 g(PVP改性)和6.70 g(HAC改性)。
Polyacrylonitrile (PAN) nanofibers exhibit low adsorption capacities for metal ions
resulting in poor desulfurization performance of the prepared desulfurization sorbents. Polyvinylpyrrolidone (PVP) and hydroxylamine hydrochloride (HAC) were selected to modify PAN nanofibers. Through electrospinning and surface modification
modified support precursors were obtained
and subsequently
Fe-Mn bimetallic desulfurization sorbents were prepared via impregnation and heat treatment. The effects of PVP ad
dition
HAC modification temperature and metal salt concentration on the structure and performance of the desulfurization sorbents were investigated. SEM analysis indicates that both PVP and HAC modifications can obtain desulfurization sorbents with good fibrous morphologies and the active components have good dispersion on the fiber surface. TEM and XPS analysis confirms the successful loading of Fe
2
O
3
and MnO
2
on the fiber surface. XRD analysis reveals the formation of Fe
7
S
8
after desulfurization. Textural property analysis demonstrates a significant increase in the specific surface area of the modified desulfurization sorbents. The unmodified desulfurization sorbent exhibits a specific surface area of 5.91 m²/g
while the modified desulfurization sorbent reaches a maximum of 8.10 m²/g (PVP modification) and 14.23 m²/g (HAC modification). ICP-OES analysis shows that the modification significantly enhances the loading (mass fraction) of active components
increasing from 0.93% to a maximum of 22.65% (PVP modification) and 30.97% (HAC modification). Desulfurization performance tests indicate that the breakthrough sulfur capacity (measured as the mass of hydrogen sulfide removed per 100 g of desulfurization sorbent) increases from 0.75 g to a maximum of 4.72 g (PVP modification) and 6.70 g (HAC modification)
respectively.
煤气脱硫静电纺丝碳纳米纤维铁锰脱硫剂改性
coal gas desulfurizationelectrospinningcarbon nanofibersFe-Mn desulfurization sorbentmodification
PUDI A, REZAEI M, SIGNORINI V, et al. Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends [J]. Separation and Purification Technology, 2022, 298: 121448.
李俏春, 郭恩惠, 李阳, 等. 类水滑石衍生锌基复合氧化物的硫化再生行为[J]. 化工进展, 2021, 40(11): 6278-6286.
LI Q C, GUO E H, LI Y, et al. Desulfurization and regeneration behaviors of zinc-based composite oxides derived from hydrotalcite [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6278-6286.
FENG Y, WANG J C, HU Y F, et al. Microwave heating motivated performance promotion and kinetic study of iron oxide sorbent for coal gas desulfurization [J]. Fuel, 2020, 267: 117215.
MAROÑO M, ORTIZ I, SÁNCHEZ J M, et al. Effective removal of hydrogen sulfide using Mn-based recovered oxides from recycled batteries [J]. Chemical Engineering Journal, 2021, 419: 129669.
母丽萍. MOFs衍生碳修饰BN材料的制备及其吸附脱硫性能研究[D]. 镇江: 江苏大学, 2022.
MU L P. Preparation of MOFs-derived carbon-modified BN materials and study on their adsorption desulfurization performance [D]. Zhenjiang: Jiangsu University, 2022.
XIA H, LIU B S, LI Q, et al. High capacity Mn-Fe-Mo/FSM-16 sorbents in hot coal gas desulfurization and mechanism of elemental sulfur formation [J]. Applied Catalysis B: Environmental, 2017, 200: 552-565.
LIU R R, HOU L L, YUE G C, et al. Progress of fabrication and applications of electrospun hierarchically porous nanofibers [J]. Advanced Fiber Materials, 2022, 4(4): 604-630.
师晓凤, 马应霞, 李鑫, 等. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 215-223.
SHI X F, MA Y X, LI X, et al. Research progress on adsorption performance of electrospun polyacrylonitrile-based nanofibers for heavy-metal ions [J]. Nuclear Material, 2022, 36(18): 215-223.
SUN Y J, ZHANG X, ZHANG M, et al. Rational design of electrospun nanofibers for gas purification: Principles, opportunities, and challenges [J]. Chemical Engineering Journal, 2022, 446: 137099.
BAJAJ B, JOH H I, JO S M, et al. Enhanced reactive H2S adsorption using carbon nanofibers supported with Cu/CuxO nanoparticles [J]. Applied Surface Science, 2018, 429: 253-257.
KIM S J, BAJAJ B, BYUN C K, et al. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization [J]. Applied Surface Science, 2014, 320: 218-224.
XIA H, LIU B S, LI Q, et al. High capacity Mn-Fe-Mo/FSM-16 sorbents in hot coal gas desulfurization and mechanism of elemental sulfur formation [J]. Applied Catalysis B: Environmental, 2017, 200: 552-565.
ZENG B, YUE H R, LIU C J, et al. Desulfurization behavior of Fe-Mn-based regenerable sorbents for high-temperature H2S removal [J]. Energy & Fuels, 2015, 29(3): 1860-1867.
荆秀艳, 赵文华, 王涵, 等. 重金属螯合复合材料研究进展[J]. 化工进展, 2014, 33(1): 144-149.
JING X Y, ZHAO W H, WANG H, et al. Progress of studies on heavy metal chelating composite materials [J]. Chemical Industry and Engineering Progress, 2014, 33(1): 144-149.
李金铭. 玉米秸秆水热炭的理化结构调控及铅吸附机理研究[D]. 长春: 吉林农业大学, 2021.
LI J M. Study on the physicochemical structure regulation and lead adsorption mechanism of corn stalk hydrothermal charcoal [D]. Changchun: Jilin Agricultural University, 2021.
GU H Q, JU P H, LIU Q, et al. Constructing an amino-reinforced amidoxime swelling layer on a polyacrylonitrile surface for enhanced uranium adsorption from seawater [J]. Journal of Colloid and Interface Science, 2022, 610: 1015-1026.
王翔, 龚宸悦, 武健丹, 等. 聚丙烯腈螯合纳米纤维膜对重金属离子的选择性吸附研究[J]. 合成树脂及塑料, 2021, 38(4): 1-6.
WANG X, GONG C Y, WU J D, et al. Selective adsorption of heavy metal ions on PAN chelated nanofiber membranes [J]. China Synthetic Resin and Plastics. 2021, 38(4): 1-6.
AN G H, LEE Y G, AHN H J. Multi-active sites of iron carbide nanoparticles on nitrogen@cobalt-doped carbon for a highly efficient oxygen reduction reaction [J]. Journal of Alloys and Compounds, 2018, 746: 177-184.
TIAN H R, CUI K P, SUN S J, et al. Sequential doping of exogenous iron and nitrogen to prepare Fe-N structured biochar to enhance the activity of OTC degradation [J]. Separation and Purification Technology, 2023, 322: 124249.
CHEN H Y, SHEN X P, JI Z Y, et al. In-situ construction of Mn-Fe mixed oxides nanoparticles on reduced graphene oxide with superior lithium storage property [J]. International Journal of Hydrogen Energy, 2022, 47(81): 34605-34615.
YAN W, WU Y L, CHEN Y L, et al. Facile preparation of N-doped corncob-derived carbon nanofiber efficiently encapsulating Fe2O3 nanocrystals towards high ORR electrocatalytic activity [J]. Journal of Energy Chemistry, 2020, 44: 121-130.
LEE D G, YANG C M, KIM B H. Enhanced electrochemical properties of boron functional groups on porous carbon nanofiber/MnO2 materials [J]. Journal of Electroanalytical Chemistry, 2017, 788: 192-197.
WANG F, LI C M, ZHONG J, et al. A flexible core-shell carbon layer MnO nanofiber thin film via host-guest interaction: Construction, characterization, and electrochemical performances [J]. Carbon, 2018, 128: 277-286.
PENG L C, SUN Y X, GUO S Q, et al. Highly efficient construction of hollow Co-Nx nanocube cage dispersion implanted with porous carbonized nanofibers for Li-O2 batteries [J]. Journal of Materials Chemistry A, 2022, 10(2): 740-751.
JI D X, PENG S J, LU J, et al. Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium [J]. Journal of Materials Chemistry A, 2017, 5(16): 7507-7515.
YAN W A, MIAO D Y, BABAR A A, et al. Multi-scaled interconnected inter-and intra-fiber porous janus membranes for enhanced directional moisture transport [J]. Journal of Colloid and Interface Science, 2020, 565: 426-435.
刘海涛. 基于钴ZIFs电催化剂的结构调控及其性能研究[D]. 北京: 北京化工大学, 2022.
LIU H T. Structural control and electrochemical performance research of cobalt ZIFs-derived catalysts materials [D]. Beijing: Beijing University of Chemical Technology, 2022.
MORE S, JOSHI B, KHADKA A, et al. Oriented attachment of carbon/cobalt-cobalt oxide nanotubes on manganese-doped carbon nanofibers for flexible symmetric supercapacitors [J]. Applied Surface Science, 2023, 615: 156386.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution