
浏览全部资源
扫码关注微信
1.榆林学院 化学与化工学院,陕西 榆林 719000
2.西安理工大学 材料科学与工程学院,陕西 西安 710048
3.榆林学院 新能源学院,陕西 榆林 719000
4.西安建筑科技大学 机电工程学院,陕西 西安 710055
Published:25 December 2024,
Received:01 January 2024,
Revised:10 March 2024,
移动端阅览
任文琛,李仲瑞,韩俊杰等.有机储氢化合物甲基环己烷脱氢催化剂研究进展[J].低碳化学与化工,2024,49(12):112-120.
REN Wenchen,LI Zhongrui,HAN Junjie,et al.Research progress on organic hydrogen storage compound methylcyclohexane dehydrogenation catalysts[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):112-120.
任文琛,李仲瑞,韩俊杰等.有机储氢化合物甲基环己烷脱氢催化剂研究进展[J].低碳化学与化工,2024,49(12):112-120. DOI: 10.12434/j.issn.2097-2547.20240001.
REN Wenchen,LI Zhongrui,HAN Junjie,et al.Research progress on organic hydrogen storage compound methylcyclohexane dehydrogenation catalysts[J].Low-carbon Chemistry and Chemical Engineering,2024,49(12):112-120. DOI: 10.12434/j.issn.2097-2547.20240001.
氢作为理想的高效、清洁能源,是我国能源体系向低碳化转型的首要选择。氢能储运技术是推动氢能产业发展的重点,其中有机液态储氢技术因具备安全性高、储氢密度大等优势已成为研究热点,尤其是甲基环己烷(MCH)-甲苯储氢体系,目前已展现出了良好的工业应用潜力。MCH-甲苯储氢体系发展的最大阻力是MCH催化脱氢过程缺乏稳定高效的催化剂,设计出稳定性好、选择性高且低温高活性的MCH脱氢催化剂是助力MCH-甲苯储氢体系发展的关键。综述了有机液态储氢技术的优势、储氢介质的特点以及MCH脱氢催化剂的研究现状。按照活性金属的稀有度将MCH脱氢催化剂分为贵金属、非贵金属催化剂,从活性组分、载体的选择和制备方式对MCH脱氢催化剂的脱氢性能进行了概述和分析。MCH脱氢催化剂未来研究可从以下方面入手:(1)延长贵金属催化剂寿命的同时提高贵金属活性组分的回收率;(2)对非贵金属脱氢催化剂进行载体改性或引入新的活性组分;(3)整合MCH脱氢催化全过程能量利用方式,引入清洁能源辅助加热,降低脱氢过程能耗。
Hydrogen
as an ideal efficient and clean energy
is the primary choice for the transformation of China’s energy system to low-carbon. Hydrogen storage and transportation technology is the key to promote the development of hydrogen energy industry
in which the organic liquid hydrogen storage technology has become a research hotspot due to its advantages of high safety and high hydrogen storage density
especially the methylcyclohexane(MCH)-toluene hydrogen storage system
which has demonstrated a good potential for industrial application. The biggest resistance to the development of catalysts for MCH-toluene hydrogen storage system is the lack of stable and efficient catalysts for MCH catalytic dehydrogenation process
and the design of great stability and high selectivity catalysts with low-temperature and high-activity is the key to facilitate the development of the MCH-toluene hydrogen storage system. The advantages of organic liquid hydrogen storage technology
the characteristics of hydrogen storage media and the current research status of MCH dehydrogenation catalysts were reviewed. The MCH dehydrogenation catalysts were classified into noble metal and non-precious metal catalysts according to the rarity of the active metal
and the dehydrogenation performances of MCH dehydrogenation catalysts were summarized and analyzed in terms of the active components
the selection of carriers
and the preparation methods. Future research on MCH dehydrogenation catalysts can start from the following aspects. (1) Extend the lifetime of precious metal catalysts and improve the recovery of precious metal active components. (2) Modify carriers or introduce new active components for non-precious metal dehydrogenation catalysts. (3) Integrate the energy utilization of the whole MCH catalytic dehydrogenation process
and reduce the energy consumption of the dehydrogenation process through the introduction of clean energy-assisted heating.
氢能甲基环己烷脱氢MCH脱氢催化剂
hydrogen energymethylcyclohexanedehydrogenationMCH dehydrogenation catalysts
梁玲. BP发布《2022年世界能源统计报告》[J]. 世界石油工业, 2022, 29(4): 78.
LIANG L. BP releases “Statistical report on world energy in 2022” [J]. World Petroleum Industry, 2022, 29(4): 78.
杨春和, 王同涛. 我国深地储能机遇、挑战与发展建议[J]. 科学通报, 2023, 68(36): 4887-4894.
YANG C H, WANG T T. Opportunities, challenges and development suggestions for deep ground energy storage in China [J]. Chinese Science Bulletin, 2023, 68(36): 4887-4894.
韩欢欢, 王梦哲, 王雪泽, 等. 新型储氢技术研究进展[J]. 化纤与纺织技术, 2023, 52(3): 53-55.
HAN H H, WANG M Z, WANG X Z, et al. Research progress of new hydrogen storage technology [J]. Chemical Fiber and Textile Technology, 2023, 52(3): 53-55.
MIHOUBIA D, TIMOUMIA S, ZAGROUBAB F, et al. Chemical engineering and processing: Process intensification [J]. Desalination, 2009, 52(2): 83-96.
SULTAN O,SHAW H. Study of automotive storage of hydrogen using recyclable liquid chemical carriers [J]. Engineering, Chemistry, Environmental Science, 1975, 76: 33642.
中化集团自主开发新型氢气储运技术将工业化[EB/OL]. (2020-03-24)[2024-01-01]. https://www.sohu.com/a/382594130_120509594https://www.sohu.com/a/382594130_120509594.
The new hydrogen storage and transportation technology independently developed by sinochem group will be industrialized [EB/OL]. (2020-03-24)[2024-01-01]. https://www.sohu.com/a/382594130_120509594https://www.sohu.com/a/382594130_120509594.
宋鹏飞, 侯建国, 王秀林. 甲基环己烷-甲苯液体有机物储氢技术的研究进展[J]. 天然气化工—C1化学与化工, 2021, 46(S1): 18-23.
SONG P F, HOU J G, WANG X L. Research progress on hydrogen storage technology of methyl cyclohexane-toluene liquid organic matter [J]. Natural Gas Chemical Industry, 2021, 46(S1): 18-23.
XU C, KOEL B E, NEWTON M A, et al. Dehydrogenation of methylcyclohexane on Pt(111) [J]. Journal of Physical Chemistry, 1995, 99(45): 16670-16675.
ALHUMAIDAN F, CRESSWELL D, GARFORTH A. Kinetic model of the dehydrogenation of methylcyclohexane over monometallic and bimetallic Pt catalysts [J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2509-2522.
BOURANE A, ELANANY M, PHAM T V, et al. An overview of organic liquid phase hydrogen carriers [J]. International Journal of Hydrogen Energy, 2016, 41(48): 23075-23091.
MENG J, ZHOU F, MA H, et al. A review of catalysts for methylcyclohexane dehydrogenation [J]. Topics in Catalysis, 2021, 64(7/8): 509-520.
WANG J,FAN S G, XU X, et al. Catalytic dehydrogenation of methylcyclohexane by Pt nanoparticles supported on nitrogen doped carbon [J]. E3S Web of Conferences, 2020, 194: 01030.
WANG Y G, NARESH S, HUFFMAN G P, et al. Pure hydrogen production by partial dehydrogenation of cyclohexane and methylcyclohexane over nanotube-supported Pt and Pd catalysts [J]. Energy & Fuels, 2004, 18(5):1429-1433
SHUKLA A A, GOSAVI P V, PANDE J V, et al. Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts [J]. International Journal of Hydrogen Energy, 2010, 35(9): 4020-4026.
YE H L,WANG T C,LIU S, et al. Fabrication of Pt-loaded catalysts supported on the functionalized pyrolytic activated carbon derived from waste tires for the high performance dehydrogenation of methylcyclohexane and hydrogen production [J]. Catalysts, 2022, 12(2): 211.
WU K, CHEN F T, WANG F, et al. Preparation of Pt supported on mesoporous Mg-Al oxide catalysts for efficient dehydrogenation of methylcyclohexane [J]. International Journal of Hydrogen Energy, 2021, 46(50): 25513-25519..
MI C J,HUANG Y P,CHEN F T, et al. Density functional theory study on catalytic dehydrogenation of methylcyclohexane on Pt(111) [J]. International Journal of Hydrogen Energy, 2020, 45(11): 6727-6737.
WANG W Y, MIAO L, WU K, et al. Hydrogen evolution in the dehydrogenation of methylcyclohexane over Pt/Ce-Mg-Al-O catalysts derived from their layered double hydroxides [J]. International Journal of Hydrogen Energy, 2019, 44(5): 2918-2925.
OSHIN S,SHARANYA N,NICALA T, et al. Stable and selective dehydrogenation of methylcyclohexane using supported catalytically active liquid metal solutions- Ga52Pt/SiO2 SCALMS [J]. ChemCatChem, 2020, 12: 4533-4537.
LIU L, LOPEZ-HARO M, LOPES C W, et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites [J]. Nature Catalysis, 2020, 3(8): 628-638.
YAN J, WANG W Y, MIAO L, et al. Dehydrogenation of methylcyclohexane over Pt Sn supported on Mg Al mixed metal oxides derived from layered double hydroxides [J]. International Journal of Hydrogen Energy, 2018, 43(19): 9343-9352.
KOU Z N,ZHI Z N,XU G H, et al. Investigation of the performance and deactivation behavior of raney-Ni catalyst in continuous dehydrogenation of cyclohexane under multiphase reaction conditions [J]. Applied Catalysis A: General, 2013, 467: 196-201.
MURATA K, KURIMOTO N, YAMAMOTO Y, et al. Structure-property relationships of Pt-Sn nanoparticles supported on Al2O3 for the dehydrogenation of methylcyclohexane [J]. ACS Applied Nano Materials, 2021, 4(5): 4532-4541.
NAKANO A, MANABE S, HIGO T, et al. Effects of Mn addition on dehydrogenation of methylcyclohexane over Pt/Al2O3 catalyst [J]. Applied Catalysis A: General, 2017, 543: 75-81.
MORI K, KANDA Y, UEMICHI Y. Dehydrogenation of methylcyclohexane over zinc-containing platinum/alumina catalysts [J]. Journal of the Japan Petroleum Institute, 2018, 61(6): 350-356.
NAKAYA Y, MIYAZAKI M, YAMAZOE S, et al. Active, selective, and durable catalyst for alkane dehydrogenation based on a well-designed trimetallic alloy [J]. ACS Catalysis, 2020, 10(9): 5163-5172.
ALCONADA K, BARRIO V L. Evaluation of bimetallic Pt-Co and Pt-Ni catalysts in LOHC dehydrogenation [J]. International Journal of Hydrogen Energy, 2024, 51: 243-255.
WANG F, YANG Y Q, WANG W Y. Efficient hydrogen production by catalytic dehydrogenation of methylcyclohexane over Ni-Pt/nano-film alumina catalyst [J]. Advanced Materials Research, 2014, 881/882/883: 315-323.
MI C J,HUANG Y P,CHEN F T, et al. Density functional theory study on dehydrogenation of methylcyclohexane on Ni-Pt(111) [J]. International Journal of Hydrogen Energy, 2021, 46(1): 875-885.
ZHANG X T, NING H, LONG L, et al. Study of the carbon cycle of a hydrogen supply system over a supported Pt catalyst: Methylcyclohexane-toluene-hydrogen cycle [J]. Catalysis Science & Technology, 2020, 10(4): 1171-1181.
ITO H, OSHIMA K, YAMAMOTO T, et al. Improved catalytic stability of Pt/TiO2 catalysts for methylcyclohexane dehydrogenation via selenium addition [J]. International Journal of Hydrogen Energy, 2022, 47(19): 38635-38643.
阳怡今. Pt基负载型催化剂的制备及催化甲基环己烷脱氢反应研究[D]. 湘潭: 湘潭大学, 2021.
YANG Y J. Preparation of Pt-based supported catalysts and study on catalytic dehydrogenation of methylcyclohexane [D]. Xiangtan: Xiangtan University, 2021.
YOLCULAR S. Hydrogen recovery from methylcyclohexane as a chemical hydrogen carrier using a palladium membrane reactor [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(14): 2148-2152.
HORIKOSHI S, KAMATA M, SUMI T, et al. Selective heating of Pd/AC catalyst in heterogeneous systems for the microwave-assisted continuous hydrogen evolution from organic hydrides: Temperature distribution in the fixed-bed reactor [J]. International Journal of Hydrogen Energy, 2016, 41(28): 12029-12037.
WANG Y G, SHAH N, HUFFMAN G P. Pure hydrogen production by partial dehydrogenation of cyclohexane and methylcyclohexane over nanotube-supported Pt and Pd catalysts [J]. Energy & Fuels, 2004, 18(5): 1429-1433.
VESELOV G B, SHIVTSOV D M, AFONNIKOVA S D, et al. Palladium-containing catalysts based on functionalized carbon nanofibers for the dehydrogenation of methylcyclohexane [J]. Kinetics and Catalysis, 2023, 64(6): 925-927.
TIEN P D, SATOH T, MIURA M, et al. Continuous hydrogen evolution from cyclohexanes over platinum catalysts supported on activated carbon fibers [J]. Fuel Processing Technology, 2008, 89(4): 415-418.
CROMWELL D K, VASUDEVAN P T, PAWELEC B, et al. Enhanced methylcyclohexane dehydrogenation to toluene over Ir/USY catalyst [J]. Catalysis Today, 2016, 259: 119-129.
GULYAEVA Y, ALEKSEEVA M V, ERMAKOV D, et al. High-loaded nickel based sol-gel catalysts for methylcyclohexane dehydrogenation [J]. Catalysts, 2020, 10(10): 1198.
LV C C,LOU P P,CHANG J R, et al. Nickel single atoms/cerium oxide hybrid for hydrogen production via solar-heating catalytic dehydrogenation of methyl cyclohexane [J]. Journal of Power Sources, 2023, 559: 232674.
BOUFADEN N, AKKARI R, PAWELEC B, et al. Dehydrogenation of methylcyclohexane to toluene over partially reduced Mo-SiO2 catalysts [J]. Applied Catalysis A: General, 2015, 502: 329-339.
BYKOVA M V A, GULYAEVA Y K, BULAVCHENKO O A, et al. Promoting effect of Zn in high-loading Zn/Ni-SiO2 catalysts for selective hydrogen evolution from methylcyclohexane [J]. Dalton Transactions, 2022, 51(15): 6068-6085.
AL-SHAIKHALI A H, JEDIDI A, ANJUM D H, et al. Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene [J]. ACS Catalysis, 2017, 7(3): 1592-1600.
XIA Z J, LIU H Y, LU H F, et al. Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation [J]. Applied Surface Science, 2017, 422: 905-912.
ZHANG J, CHEN T, JIAO Y, et al. Improved activity of Ni-Mo/SiO2 bimetallic catalyst synthesized via sol-gel method for methylcyclohexane cracking [J]. Petroleum Science,2021, 18(5): 1530-1542.
KOSKIN A P, STEPANENKO S A, ALEKSEEVA M V, et al. The origin of extraordinary selectivity in dehydrogenation of methylcyclohexane over Ni-Sn-based catalysts [J]. Chemical Engineering Journal, 2023, 476: 146629.
MENG J C, YUAN X Z, YAN Y, et al. Supported metal clusters: Nix/CuZnAl catalysts effectively improve the performance of hydrogen evolution from methylcyclohexane dehydrogenation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 144: 104719.
PATIL S P, PANDE J V, BINIWALE R B. Non-noble Ni-Cu/ACC bimetallic catalyst for dehydrogenation of liquid organic hydrides for hydrogen storage [J]. International Journal of Hydrogen Energy, 2013, 38(35): 15233-15241.
SONG Y, LIN W, GUO X C, et al. Aromatization and isomerization of methylcyclohexane over Ni catalysts supported on different supports [J]. Green Energy & Environment, 2019, 4(1): 75-82.
YOLCULAR S. Organic chemical hydride dehydrogenation over nickel catalysts supported with SiO2 for hydrogen recovery [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(14): 2031-2034.
0
Views
0
下载量
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution